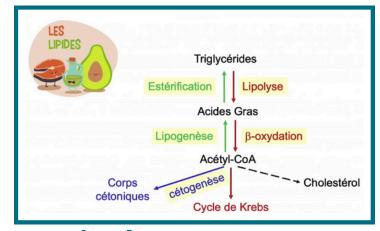
LIPOLYSE ET B-OXYDATION


- I) Introduction
- II) Lipolyse
- III) Béta oxydation
- A) Entrée des AG dans la cellule
- B) Activation des AG dans la cellule
- C) Passage vers la mitochondrie
- D) Les étapes de la bêta-oxydation
- E) Bêta-oxydation et acides gras particuliers

En condition de jeûne, on va mobiliser les réserves lipidiques :

- Les triglycérides (TG) sont dégradés via la lipolyse
- Les **acides gras** (AG) sont transportés (par <u>l'albumine</u>) dans un tissu cible et sont dégradés via la β-oxydation

 \triangle On rappelle que la lipogenèse est la **synthèse des AG**, pas la synthèse des TG, donc la voie inverse de la lipogenèse est la **β-oxydation**, pas la lipolyse \triangle

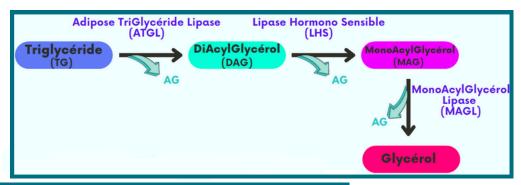
Ce schéma est très important :

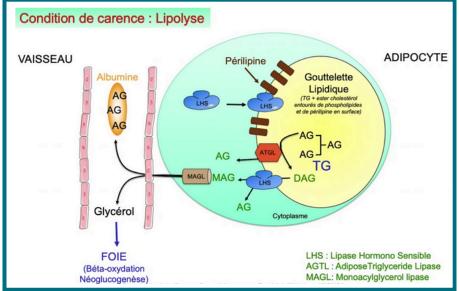
- en condition post-prandiale, on stocke -> lipogenèse puis estérification
- en condition de carence, on a besoin d'énergie -> lipolyse puis b-oxydation

On va voir dans cette fiche:

- La dégradation des TG en AG -> Lipolyse
- La dégradation des AG en acétyl-CoA -> Bêta-oxydation

<u>II) Lipolyse</u>


Dans les <u>gouttelettes lipidiques</u>, les lipides sont stockés sous forme de **TG** et d'**esters de cholestérol**.


Elles sont entourées de **phospholipides** et de **périlipines** (protéines) à la surface, qui permettent de protéger les lipides de l'action des **lipases** en condition **POST-PRANDIALE** (en effet, après un repas, on ne veut pas dégrader les TG, donc on ne veut pas de l'enzyme qui les dégrade (=lipase), donc on doit s'en protéger avec les périlipines)

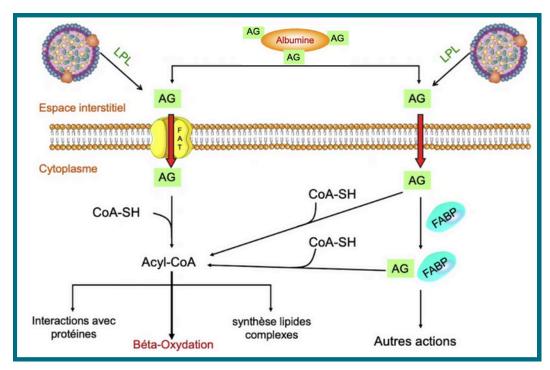
Mais dans ce cours, on est en période de carence, période de jeûne, c'est-à-dire qu'on va dégrader les lipides pour avoir de l'énergie!

On va observer un **réarrangement des protéines périlipines**, activant ainsi l'enzyme principale de la lipolyse : la <u>Lipase Hormono Sensible</u>

Le schéma de la prof est incroyable, si vous voulez le texte qui redit la même chose allez voir la ronéo ou la vidéo, mais vous avez toutes les infos sur le schéma. Et si vous avez des questions go forum!

III) Bêta-oxydation

A) Entrée des AG dans la cellule

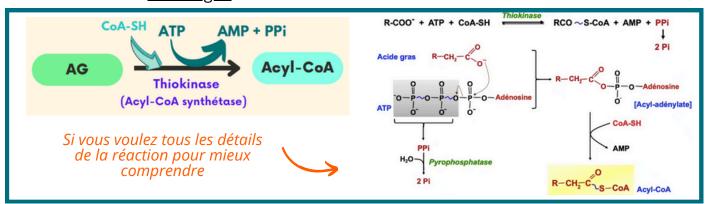

Les AG sont soit transportés par <u>l'**albumine**</u>, soit proviennent des <u>**chylomicrons**</u> (dégradés par la LPL)

Pour **rentrer dans la cellule** où ils vont être oxydés, ils peuvent :

- **Diffuser librement** à travers la membrane cellulaire
- Utiliser un transporteur membranaire FAT

Une fois dans la cellule, les AG peuvent :

- Soit se fixer à une **protéine de transport FABP** (Fatty Acyl-Binding Protein)
- Soit être **transformés en dérivés acylés** = <u>ÉTAPE INITIALE DU CATABOLISME</u> Vous remarquerez dans le schéma suivant, qu'une fois rentrés dans la cellule, ces AG doivent être activés (ajout d'un CoA par la thiokinase)


B) Activation des AG dans la cellule

Cette étape d'activation est une étape <u>OBLIGATOIRE</u>, préalable à l'oxydation de <u>TOUS</u> les AG L'activation est catalysée par la **thiokinase / Acyl-CoA Synthétase (ACS)**, qui a **4 sous-familles**, en fonction de la longueur de la chaîne carbonée de l'AG :

ACSS = AG à chaîne <u>courte</u>
ACSM = AG à chaîne <u>moyenne</u>
ACSL = AG à chaîne <u>longue</u>
ACSBG = AG à chaîne <u>très longue</u>

<12C: Mitochondrie et microsome

>12C : Cytoplasme et réticulum endoplasmique (=RE)

C) Passage vers la mitochondrie

Les AG à chaîne <u>courte</u> et <u>moyenne</u> (<12C) (abondants dans le **lait**) :

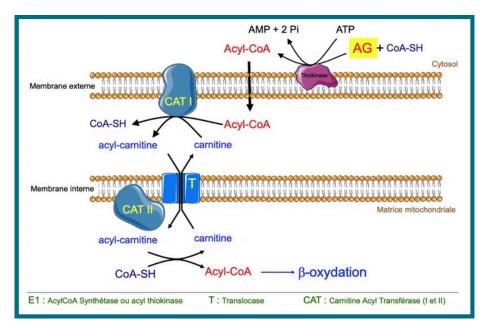
- La thiokinase est mitochondriale (ils peuvent entrer tranquillement car ils ne sont pas encore activés (pas encore de Co-A)
- Peuvent entrer librement dans la mitochondrie (capables de traverser librement la MIM (=membrane interne mitochondriale))

Les AG à chaîne <u>longue</u> et <u>très longue</u> (>12C) (abondants dans **l'alimentation** et libérés par le **tissu adipeux**) :

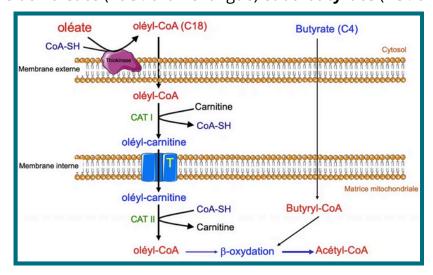
- La thiokinase est cytoplasmique (donc avant d'entrer dans la mitochondrie, les AG sont déjà activés)
- Ne peuvent pas franchir la MIM à cause de leur coenzyme A qui est imperméable à la MIM, ils nécessitent la Carnitine/Acyl-carnitine Transférase (CAT)

Donc comment les AG à chaîne longue et très longue passent du cytoplasme à la mitochondrie ? La **carnitine** a plusieurs origines :

- Soit <u>exogène</u> = la **viande**
- Soit <u>endogène</u> = **lysine** et **méthionine** (dans le foie et les reins)


L'acyl-CoA traverse la Membrane Mitochondriale Externe (MME), et arrive dans l'espace intermembranaire, où il réagit avec **CAT I**

CAT I transfère le groupement acyl sur la **carnitine**


L'acyl-carnitine traverse la MMI (=MIM) et atteint la matrice mitochondriale, et ce grâce au transporteur **carnitine acylcarnitine translocase**

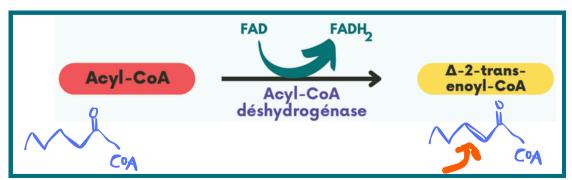
L'acyl-carnitine réagit avec **CAT II**, qui lui enlève la carnitine et lui rend un CoA-SH (d'origine mitochondriale puisque imperméable à la MMI)

-> étape limitante : consomme un ATP, et il faut avoir un apport suffisant en carnitine
Si on a une déficience en carnitine, on aura un défaut d'utilisation des AG à chaîne longue comme fuel

On prend l'exemple de **l'oléate** (18C : chaîne longue) et du **butyrate** (4C : chaîne courte)

Et là vous vous dîtes : mais c'était pas le stéarate à 18C ?? La différence c'est juste que l'oléate a une insaturation, alors que le stéarate n'en a pas, mais la prof ne le dit pas, mais maintenant vous savez

D) Les étapes de la bêta-oxydation

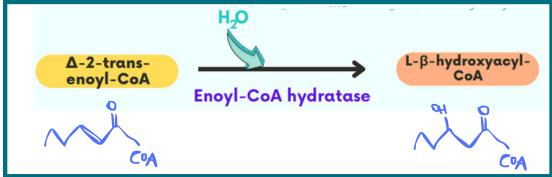

La **β-oxydation** (catabolisme des AG) est une voie <u>mitochondriale</u> (donc <u>aérobie</u>) qui a principalement lieu dans le **foie**, mais aussi dans les **muscles**

Elle consiste en la répétition d'une séquence de 4 réactions :

- Les <u>3 premières</u> permettent la formation d'un acyl sur le carbone β (C3)
- La <u>4ème</u> permet de casser l'acyl au niveau de ce carbonyle, ce qui va **libérer un acétyl-CoA** de l'acyl-CoA

1. Déshydrogénation

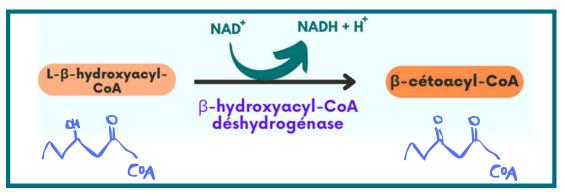
L'acyl-CoA déshydrogénase (ancrée à la MIM) crée une **double liaison** entre C2 et C3, aboutissant à la production d'un Δ-2-trans-enoyl-CoA. **Réduction du FAD en FADH2.** (FADH2 sera réoxydé par un transfert d'électrons à la chaine respiratoire mitochondriale via une flavoprotéine (ETF)) *Je vais vous prendre un exemple d'acyl-CoA à 6C*


L'acyl-CoA déshydrogénase possède **4 isoformes**, en fonction de la taille de l'AG (avec action chevauchante):

- SCAD (Short) = 4-8 C
- MCAD (Medium) = 6-12 C
- LCAD (Long) = 12-16 C
- VLCAD (Very Long) = 12-18 C

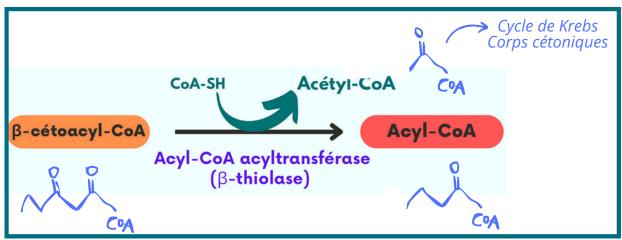
CAD = Chain Acyl-CoA Déshydrogénase

2. Hydratation


L'enoyl-CoA hydratase, qui possède **3 isoformes**, catalyse une hydratation **stéréospécifique** de la double liaison précédemment formée, en fixant un **OH sur le carbone β (C3)**, produisant ainsi un **L**-β-hydroxyacyl-CoA

Le tutorat est gratuit. Toute reproduction ou vente est interdite

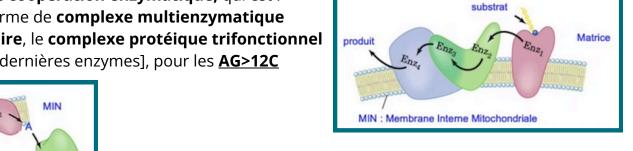
3. Déshydrogénation

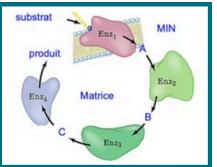

La β-hydroxyacyl-CoA déshydrogénase permet d'oxyder l'hydroxyle précédemment ajouté sur le carbone β (C3), formant ainsi un dérivé β- cétoacyl-CoA. NAD+ est réduit en NADH + H+ (La β-hydroxyacyl-CoA déshydrogénase a une spécificité absolue pour le L-β-hydroxyacyl-CoA)

4. Clivage thiolytique

L'acyl-CoA acyltransférase (β-thiolase) entraîne un clivage thiolytique du β-cétoacyl-CoA, on obtient alors un acétyl-CoA et un acyl-CoA raccourci de 2 carbones (qui sont allés dans

l'acétyl-CoA)


Bilan (pour un tour):

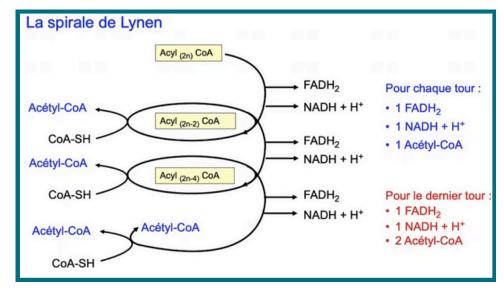

Acyl-CoA + H2O + FAD + NAD + CoA-SH -> Acyl-CoA (-2C) + FADH + NADH + H + Acétyl-CoA

Les enzymes de la bêta-oxydation sont toutes mitochondriales et indépendantes (contrairement à la synthèse des AG avec les différentes enzymes qui composent l'AGS) Pour les étapes **2**, **3** et **4**, elles sont <u>membranaires</u> ou <u>solubles</u>.

On observe une **coopération enzymatique**, qui est :

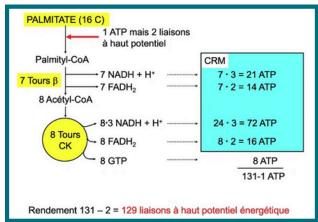
 Soit sous forme de complexe multienzymatique membranaire, le complexe protéique trifonctionnel (TFP) [les 3 dernières enzymes], pour les AG>12C

Soit sous forme d'enzymes solubles dans la matrice mitochondriale, pour les AG<12C



Sachant que l'AG perd 2 carbones à chaque tour, si on avait un AG>12C (comme la plupart du temps), il passera par le TFP. Au bout d'un moment il passe à moins de 12C, donc c'est les enzymes 2, 3 et 4 solubles dans la matrice qui vont continuer à oxyder l'AG.

Si au début on a un AG court ou moyen, il pourra directement utiliser le système d'enzymes solubles.


La β-oxydation est souvent comparée à une spirale : la **spirale de Lynen** (dont <u>le dernier tour</u>

produit 2 acétyl-CoA)

On récapitule tout avec un **exemple** : l'oxydation du palmitate :

explications juste après

Le palmitate rentre dans la mitochondrie via CAT, car c'est un AG>12C Il va être activé en palmityl-CoA en consommant 1 molécules d'ATP mais 2 Liaisons à Haut potentiel Energétique (LHE) (parce que l'ATP est hydrolysé en AMP et 2 Pi) Le palmitate va ensuite produire 8 acétyl-CoA (16/2 = 8) en 7 tours (8-1=7)

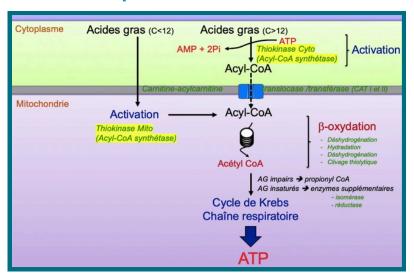
Ces acétyl-CoA vont rejoindre le cycle de Krebs, qui in fine donneront, via la CRM, 131 ATP (donc 131 LHE) mais ça fait un **rendement de 129 LHE** puisqu'on en a consommées 2 pour activer le palmitate (131-2=129)

Sincèrement, si vous ne comprenez pas le détail du calcul, retenez simplement que l'oxydation du palmitate aura un rendement de 129 LHE

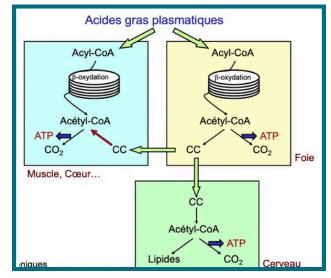
E)Bêta-oxydation des AG particuliers

AG impairs

La différence avec les AG <u>impairs</u>, c'est que lors du <u>dernier tour</u>, qui s'initie alors par un AG à 5 carbones, on aura la production d'un **acétyl-CoA** [2C] (comme en temps normal) et d'un **propionyl-CoA** [3C], qui est **transformé en succinyl-CoA** (on en reparlera dans un autre cours) en 3 étapes avec consommation d'ATP


Le propionyl-CoA est un <u>précurseur de la néoglucogenèse</u>, qui est également produit par le <u>métabolisme de certains acides aminés</u>

AG insaturés


Les AG insaturés nécessitent l'implication d'enzyme(s) supplémentaire(s)

- Les enzymes de la β-oxydation sont incapables d'hydrater en CIS (les doubles liaisons des AG insaturés). C'est pourquoi on a l'intervention d'une enoyl-CoA isomérase, qui convertit la double liaison CIS en double liaison TRANS
- Les AG <u>polyinsaturés</u> nécessitent l'action supplémentaire d'une **réductase**

Schéma récap

Si on a une **lipolyse trop importante**, le cycle de Krebs va être saturé. Dans cette situation, les acétyl-CoA vont plutôt s'engager dans la **synthèse de corps cétoniques** (dans le foie). Ils vont être transportés jusqu'aux cellules qui en ont besoin (muscles, cœur, cerveau)

Autre schéma récap

AG	Site d'activation	Dégradation	Autres réactions
AG court /moyen saturé pair	Mitochondrie	β-oxydation mitochondriale	
AG long et très long saturé pair	Cytoplasme + transport vers mitochondrie via CAT	β-oxydation mitochondriale	
AG long et très long saturé impair	Cytoplasme + transport vers mitochondrie via CAT	β-oxydation mitochondriale	Produit final = propionyl-CoA transformé en succinyl-CoA
AG long et très long insaturé	Cytoplasme + transport vers mitochondrie via CAT	β-oxydation mitochondriale + 2 enzymes	+ isomérase (déplacement de double liaison cis→trans) + réductase (Réduction et déplacement de double liaison)
AG moyen (voie alternative)		ω-oxydation dans le RE	Produit final = acide dicarboxylique vers β-oxydation mitochondriale

La dernière ligne est à titre d'information

Qcms de la prof

QCM: Concernant la lipolyse et la béta-oxydation, donnez les réponses exactes:

- A) La lipolyse adipocytaire a lieu en situation post-prandiale
 B) La lipase hormonosensible est toujours présente dans la gouttelette lipidique
 C) La monoacylglycérol lipase catalyse l'hydrolyse des triglycérides en monoacylglycérol
 D) Les AGNE à chaînes longues (> 12C) requiert la carnitine-acylcarnitine translocase pour entrer dans la mitochondrie
- E) La β-thiolase catalyse le clivage thiolytique permettant la formation d'acétyl-CoA

Et voilà ! fini pour cette fiche pas trop compliquée et assez courte, faites bien la différence entre bêta oxydation et lipolyse.

Bref bon courage! Travaillez bien

Correction: DE

A) Faux : en situation de jeûne

B) Faux : en post-prandiale, les périlipines empêchent son entrée dans la gouttelette

C) Faux : elle hydrolyse le MAG en AG + glycérol

D) Vrai E) Vrai