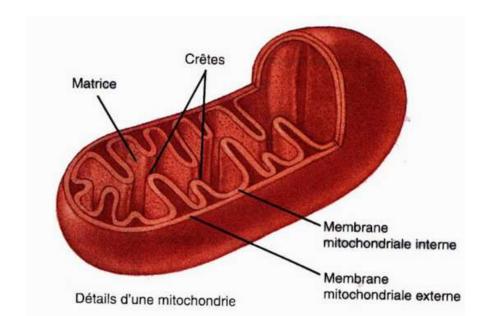


LE COMPLEXE PYRUVATE DÉSHYDROGÉNASE (DDH)

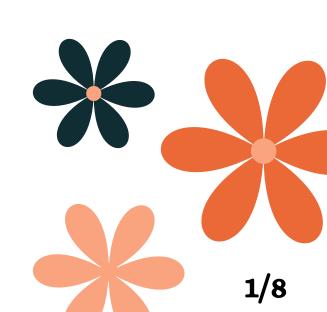
1. INTRODUCTION

A) Structure de la mitochondrie


Le complexe **PDH** et le **CK** se déroule au niveau de la <u>mitochondrie</u>

La mitochondrie = organite cytoplasmique spécifique des eucaryotes aérobies

Structure: De l'intérieur vers l'extérieur

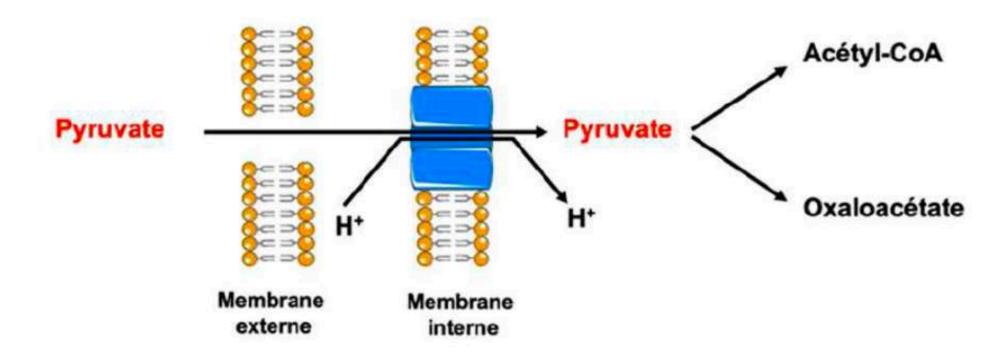

- -> Enzymes solubles
- -> Enzymes du CK (++ sauf 1 : la succinate DH ++)
- -> Enzymes de la Béta-oxydation (++sauf 1: l'acyl-COA DH ++)
- -> Enzymes du métabolisme des Aa

- Une Membrane Interne Mitochondriale (MIM): imperméable et très sélective +++
- -> Protéines de transport
- -> éléments de la CRM
- -> synthèse d'ATP
- -> Crètes
 - Un Espace Inter-membranaires (EIM)
 - Une Membrane Exterme Mitochondriale (MEM): perméable et peu sélective

La MMI possède des **crêtes** qui vont <u>augmenter sa surface de contact</u> => **ratio protéines/ lipides le + élevé!**

- -> Éléments de la CRM, ATP synthase, acétyl-CoA DH, succinate DH...
 Mais surtout des <u>protéines de transport</u> (puisqu'elle serait imperméable sinon)
- -> Une matrice mitochondriale
- => La majorité des enzymes des voies métaboliques

B) Entrée du pyruvate dans la mitochondrie


Le métabolisme mitochondrial commence par le passage du pyruvate, du cytoplasme vers la mitochondrie.

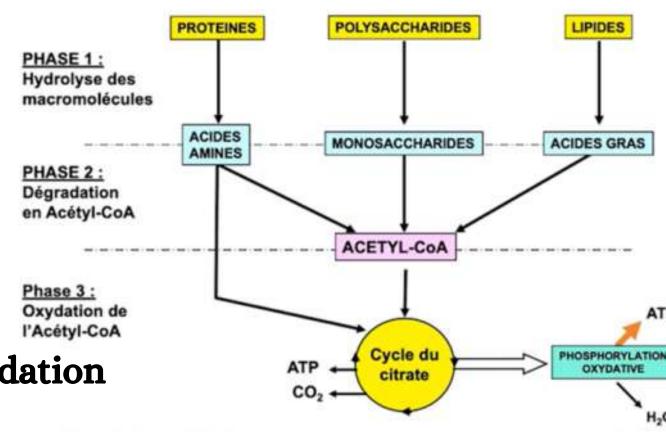
Le pyruvate rentre dans la mitochondrie en 2 étapes :

- <u>Passage de la MEM</u> (perméable au pyruvate) par <u>diffusion passive</u> via une porine
- **Passage de la MIM** (imperméable au pyruvate) par **transport actif** via la pyruvate translocase (symport (= même direction) couplé à l'entrée de protons qui viennent de la CRM)

TUT'rappelle : transport actif = le passage du pyruvate nécessite de l'NRJ (apporté par la conso d'un ATP)

C'est le potentiel de membrane (*la membrane est chargée*) généré par le gradient de protons (*produit dans la CRM*) qui est la force motrice.

Dans la mitochondrie, le pyruvate peut être converti :


- -> En situation de faible potentiel énergétique (besoin en ATP) : en **Acétyl-COA**
- => CK: la cellule va produire de l'énergie
- -> En situation de fort potentiel énergétique (PAS de besoin en ATP): en **OAA**
- => NGG: la cellule va stocker ce potentiel énergétique

C) Origine de l'acétyl-CoA

L'acétyl-CoA représente le point de convergence des catabolismes, des glucides, des lipides et des protéines

L'acétyl-CoA peut provenir :

- De l'oxydation des AG lors de la Béta-oxydation
- De la **cétolyse**
- De la dégradation oxydative des AG cétogènes
- De la décarboxylation oxydative du pyruvate catalysée par la PDH

A) Le devenir de l'actétyl-CoA

Pour rentrer dans le CK, le pyruvate doit tout d'abord être converti en acétyl-CoA:

=> réaction de décarboxylation oxydative catalysée par la PDH

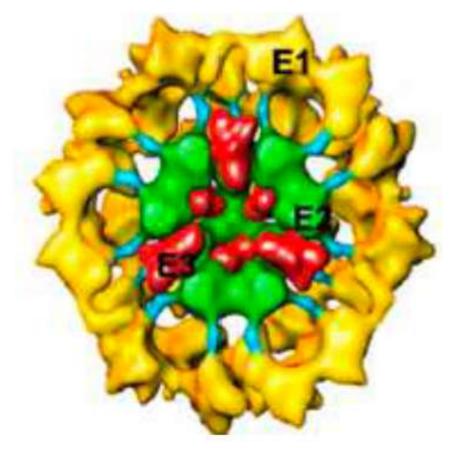
Cette réaction est très rapide, et sa complexité ajouté à la gestion de potentiel énergétique fort, ne pourrait pas être géré par une seule enzyme.

- => PDH = Complexe Multienzymatique
- -> 10 millions Da
- -> accroché à la face interne de la MIM

Le nombre de copies de chaque enzyme + la taille du complexe varie entre les espèces.

Chez les humains ...

La PDH est un complexe composé de <u>3 enzymes</u> (présentes en plusieurs exemplaires) qui impliquent <u>5 coenzymes</u> (CoE)


- E1 = La pyruvate déshydrogénase => CoE 1 = Thiamine pyrophosphate (TPP)
- E2 = La dihydrolipoyl transférase => CoE2 et CoE3 = Acide lipoïque + CoA-SH
- E3 = La dihydrolipoyl déshydrogénase => CoE4 et CoE5 = NAD+/NADH+H+ et FAD/FADH2

Modélisation:

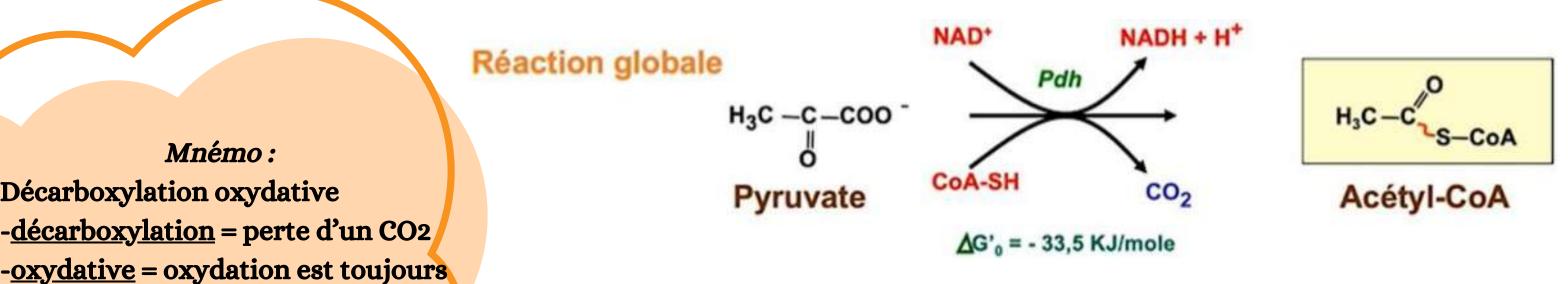
- En périphérie = E1
- Plus au centre = E2 et son domaine lipoyl
 (contact direct de l'E1)
- Au centre = E3

- Il Permet la formation d'une <u>liaison à haut potentiel énergétique (thioester)</u> **SANS intervention de l'ATP**
- Les bras de E2 peuvent flotter pour prendre les e- de l'E1 et les gorupes acétyls du pyruvate pour les céder à E3
- Il y a plusieurs copies de chaque enzyme

- => les intermédiaires vont très vite réagir!
- => canalisation des intermédiaires réactionnels

Cela permet d'empêcher certains produits de se diffuser à l'extérieur du complexe enzymatique

• Il permet une augmentation de la vitesse de réaction + meilleur coordination de la région


B) Le fonctionnement de la PDH

La réaction catalysée par la PDH:

- -> **décarboxylation oxydative** du pyruvate, elle n'a lieu <u>uniquement</u> en condition aérobie.
- -> A l'issue de cette réaction le pyruvate est transformé en acétyl-CoA
- -> libération d'un CO2

<u>Plusieurs caractéristiques</u>:

- Elle fait intervenir la coenzyme NAD+ réduit en NADH+H+
- Réaction irréversible+++
- Elle a lieu dans la matrice mitochondriale +++
- $\Delta G'o = -33,5 \text{ KJ/mole}$, chez les mammifères
- <u>Seule</u> réaction qui permet de **produire de l'acétyl-CoA à partir de pyruvate**
- Elle permet le passage d'une molécule de **pyruvate inerte --> à une molécule avec un fort** potentiel énergétique (liaison thioester de l'acétyl-CoA)

1. Décarboxylation

La pyruvate déshydrogénase (E1) permet la décarboxylation du pyruvate (par libération de CO2) pour donner un dérivé hydroxyéthyl (un acétylaldéhyde) lié au TPP (CoE de l'E1)

- -> 1ère étape
- -> la plus lente
- -> c'est donc **l'étape limitante de l'ensemble de la réaction**

couplée à une réduction :

NAD+->NADH+H+

2.Oxydation

Cette réaction est catlalysée par la dihydrolipoyl transférase (E2).

- => <u>l'oxydation</u> + <u>transfert</u> de l'hydroxyéthyl sur **l'acide lipoïque** via une <u>liaison thioesther</u>
- -> puis le groupe acétyl est donné à la CoA-SH => formation d'acétyl-CoA De plus:
- -> formation d'un acide lipoïque sous forme réduite, cad un acide dihydrolipoïque lié à l'E2 Intermédiaire utilisé par la réaction = S-acétylllipolate

[H₃C -CHOH -TPP]

$$E_1$$
 -TPP

 S S

 E_2 S-acétyllipoate

 E_1 -TPP

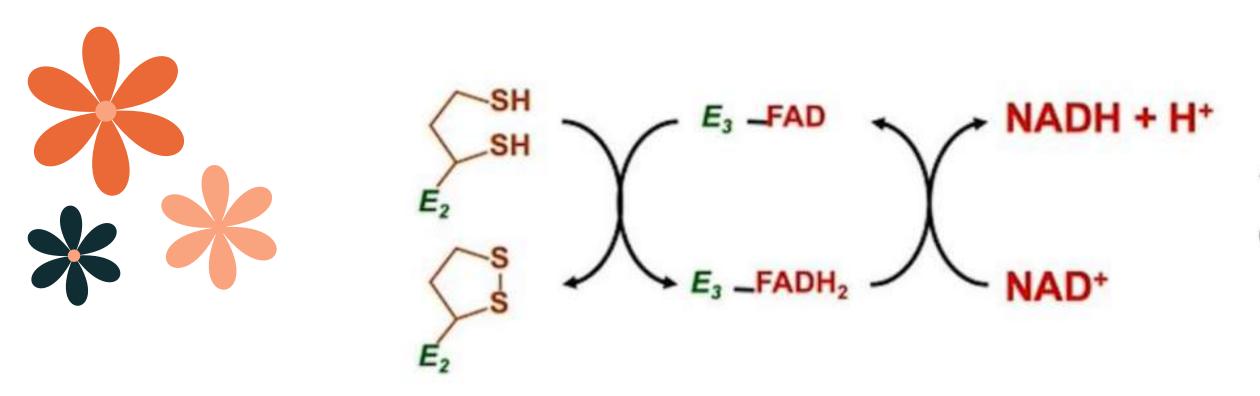
 $S \sim CO - CH_3$ CoA-SH

 E_2 CoA-SH

 E_2 Acétyl-CoA

Encore une fois l'oxydation est couplée à une réduction **Oxydation** de l'hydroxyéthyl en acétyl-CoA

Réduction de l'acide lipoïque en acide dihydroxylipoïque


Le reste de la réaction, n'a que pour unique but de reformer l'acide lipoique (l'acétyl-CoA étant déjà former)

3. Réoxydation

Cette réaction est catalysée par la dihydrolipoyl déshydrogénase (E3)

- => <u>réoxydation</u> de l'acide lipoïque (retrouvant ces liaison disulfures), **AVEC la réduction du** FAD en FADH2, immédiatement réoxydé en FAD (liées à l'E3)
- -> le FADH2 réduit il va pouvoir être <u>réoxydé</u> en FADH grâce au **couplage de la réduction** NAD+ en NADH+H+

La <u>réoxydation</u> du NADH+H+ en NAD+ aura, elle, lieu grâce au système de transport de la CRM. On reverra ça dans le cours spécialement dédié à la CRM (Chaîne Respiratoire Mitochondriale)

À la fin de la réaction, **toutes les <u>coenzymes</u>** associées aux différentes sous-unités enzymatiques du complexe <u>de la PDH</u>, auront **retrouvé leur forme d'origine**

ON REPETUT'

<u>Les différents destins de 'acétyl-CoA en fonction du besoin de la cellule</u> (on peut dire qu'il se comporte comme un interrupteur moléculaire)

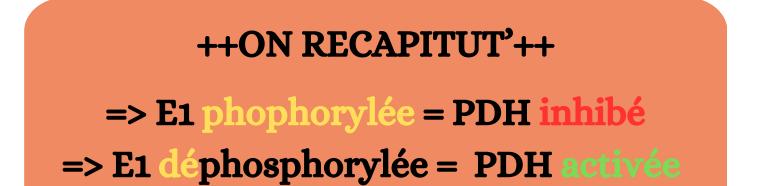
- En cas de <u>niveau énergétique faible</u> → **CK** (production d'énergie)
- En cas de <u>niveau énergétique élevé</u> → <u>Lipogenèse</u> (production d'AG) et <u>Cétogenèse</u> (production de CC) : le citrate généré à partir de l'acétyl-CoA dans la 1ère phase du cycle de Krebs quitte la mitochondrie)

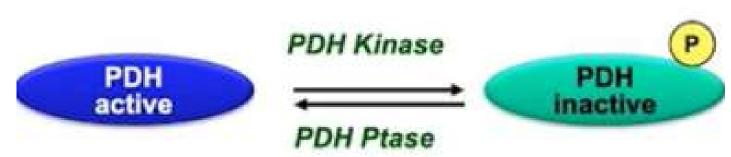
C) Régulation de la PDH

- Régulation covalente
- => <u>Au repos</u>

En situation de repos, il n'y a PAS besoin de produire de l'énergie :

→ Les ratios ATP/ADP; NADH+H+/NAD+ et Acétyl-CoA/CoA-SH sont élevés


(en gros y'a + de molécules à fort potentiel énergétiques puisqu'elles ne sont pas consommées => beaucoup d'ATP, NADH+H+ et A-CoA)


- → Activation de la **PDH kinase** (= phosphorylation de la PDH)
- → La PDH kinase activée va **phosphoryler** le résidu sérine sur l'E1 de la PDH
- => conséquences : diminution de l'activité de la PDH
- → Inhibition du complexe PDH
- => En activité

En situation d'activité, il y a **besoin** de produire de **l'énergie** :

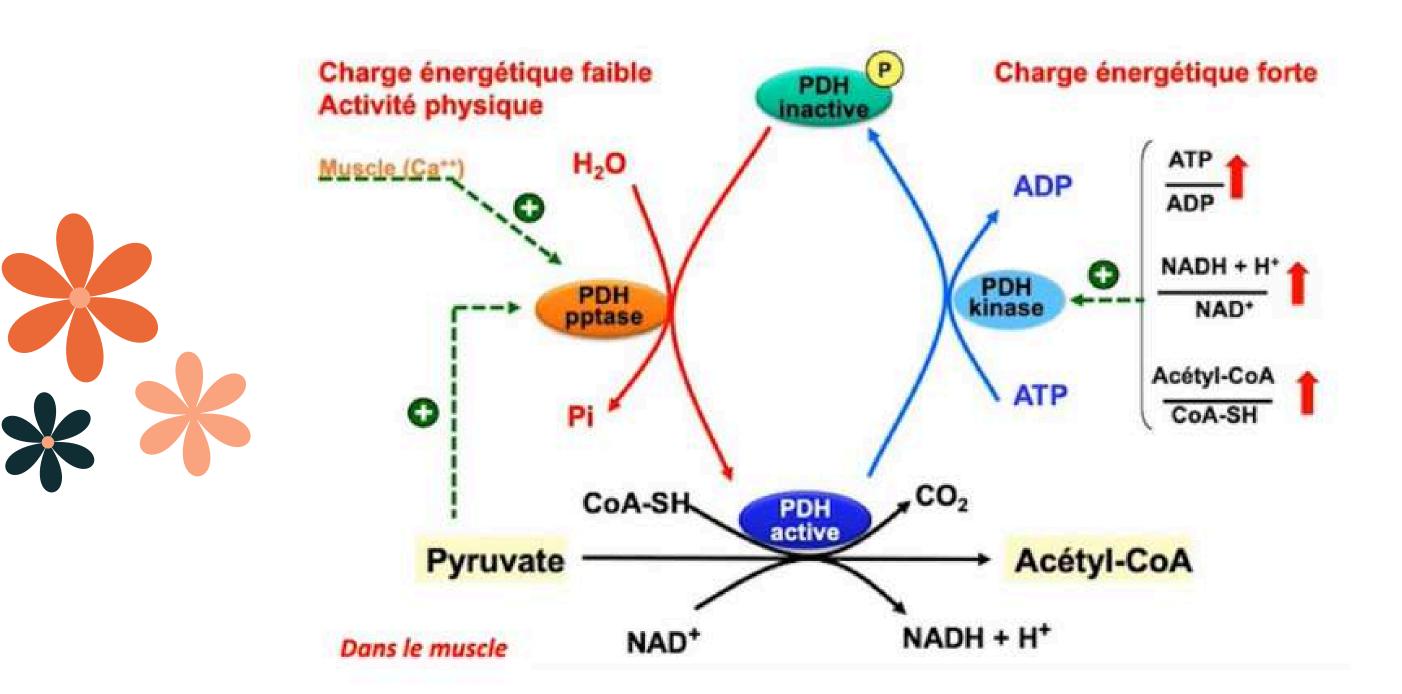
- → Les fortes concentrations en ADP (car consommation d'ATP) et en pyruvate (témoin de l'activité de la glycolyse) inhibent la PDH kinase
- → Une forte concentration en **calcium** (Ca2+) active la PDH phosphatase (=déphosphorylation de la PDH) = l'augmentation intracellulaire de calcium est spécifique au muscle (lors de la contraction musculaire)
- → La PDH phosphatase activée va <u>déphosphoryler</u> le résidu sérine sur l'E1 de la PDH
- => Conséquence : augmentation de l'activité de la PDH
- → <u>Activation du complexe PDH</u>

• Régulation allostérique (= régulation par les produits de la réaction)

=> L'acétyl-CoA -> inhibe l'E2 => Le NADH+H+ -> inhibe l'E3

Ici on a petite liste de toutes les situations où la PDH est active ou inactive (c'est 100% logique) :

Active (besoin NRJ)	Inactive
 Concentration de glucose élevé (après un repas) Par l'insuline (= beaucoup de glucose présent) Demande importante en ATP Déficit en substrat énergétique de remplacement (AG, CC) Par la lipogenèse 	 Déficit en glucose (jeûne) Faible demande en ATP Excédent en substrats énergétiques alternatifs (AG, CC)



- En cas de concentration musculaire:
- -> augmentation de la concentration de **CA2+** => active la **PDH phosphatase**
- => **déphosphorylise l'E1** => complexe actif

De cette façon, il y aura production d'acétyl-CoA à partir du pyruvate, et le cycle de Krebs pourra démarrer.

- En situation de charge énergétique forte :
- => activation de la **PDH kinase** => **phosphorylise** l'**E1**=> le complexe **inactif**

Exemple concret: Fonctionnement de la PDH dans le muscle squelettique

L'isoforme musculaire de la PDH phosphatase qui déphosphoryle l'E1, peut être activée par le Ca2+.

L'augmentation du Ca2+ cytosolique lors de l'activation de la contraction musculaire se traduit par une augmentation de la concentration du Ca2+ mitochondrial Cette augmentation du Ca2+ mitochondrial va activer la PDH phosphatase L'activation de la PDH phosphatase va déphosphoryle l'E1 et active la complexe PDH Une PDH active signifie qu'il y aura plus de production d'acétyl-CoA à partir du pyruvate, le cycle du citrate

peut alors fonctionner normalement

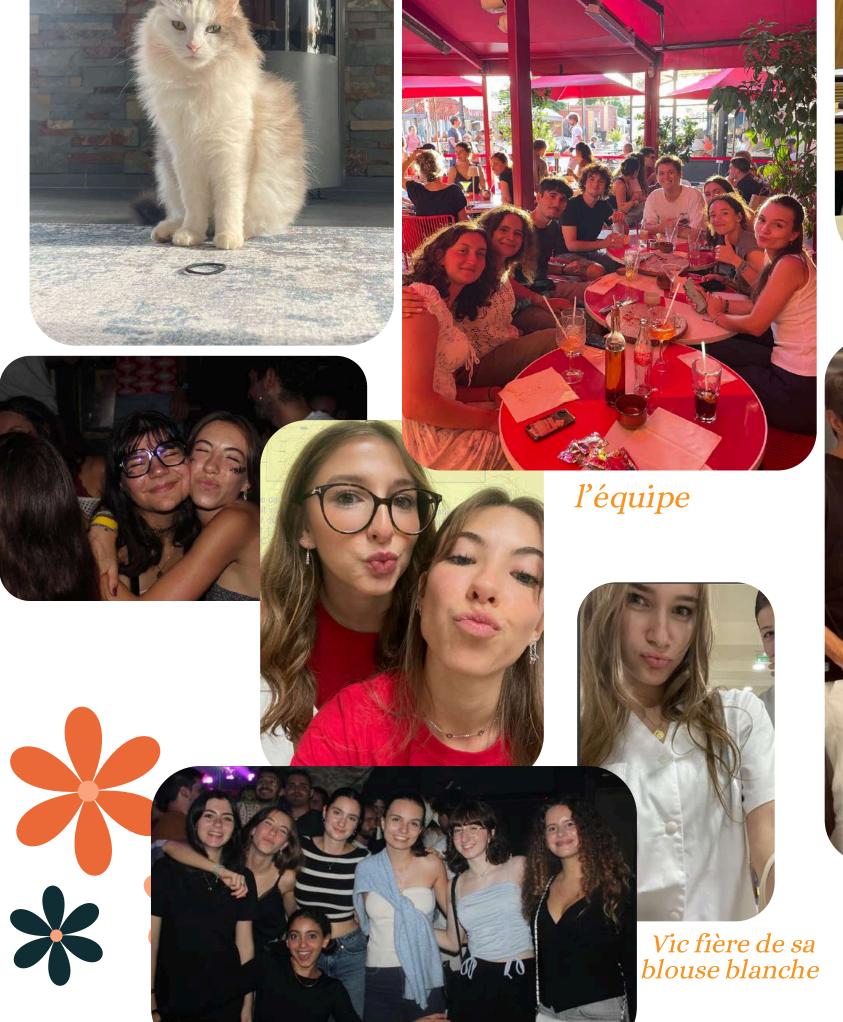

→ Lors d'un exercice, le métabolisme mitochondrial musculaire peut être stimulé

Photo dédis

- dédi à mon petit chat juniiie (regardez comme elle est belle ma vie)
- dédi à mon autre petit chat, mon binôme, mon tout, elle se reconnaîtra
- dédi à mes puxes
- dédi à "Viva la vida de colplay"
- dédi au latte machiato de la BU, ("Nini un p'tit café?")
- dédi à la BU de valrose évidemment (ma safe place)
- dédi au lundi soir chez aless
- dédi à toutes les personnes formidables que j'ai rencontré cette année
- dédi à margot parce qu'elle est jalouse de matisse (oui elle trompe antoine avec moi)
- dédi à ma petie vic, futur cardiologue (je suis fière de toi)
- dédi à l'autre vic, on se retrouve au flo ma belle
- dédi aux bg de marseille, loin des yeux près du cœur les gars
- dédi à matisse parce qu'il me fait rire
- dédi à vous les biochatons, regardez comme vous êtes studieux(ses) :

Amphi 3 pendant l'épreuve de bioch

Le jour de l'exam du S2