<u>ÉPIDERME</u>

I. Introduction

Rappel historique

- Le terme histologie vient du grec ἰστός (histós) qui veut dire « tissu » et λόγος (logos) qui veut dire « discours ». C'est la science qui étudie les tissus biologiques.
- > Marcello Malpighi (italien):
 - O Professeur de médecine en Italie : à Bologne et à Pise.
 - o Considéré comme le fondateur de l'histologie au XVII ème siècle.
 - O Donne son nom aux épithélium malpighien.

Abréviation

Voici maintenant une liste de termes fréquemment utilisés dans ce cours et que vous trouverez donc souvent sous forme d'abréviations comme indiqué sur cette diapositive.

Abréviations fréquemment utilisées dans ce cours:

CL : cellules de Langerhans CM : cellules de Merkel

HE: coloration hématoxyline éosine

IHC: immunohistochimie

JDE : jonction dermo-épidermique MO : microscopie optique ME : microscopie électronique

Généralités

- ❖ La peau est l'organe le plus lourd et le plus étendu du corps humain.
- Ex : Chez un adulte, le poids de la peau est entre 3 et 4 kilos et sa surface de l'ordre de 2 m².
- De la superficie de la profondeur on trouve :
- O Un épithélium de revêtement : l'épiderme
- La jonction dermo-épidermique (JDE)
- Un tissu conjonctif: le derme
 - Se prolongent sans limites précises par l'hypoderme.
- o Un tissu conjonctivo-adipeux : hypoderme.
 - Relie la peau aux organes sousjacents.

On appelle annexes cutanées :

- Les follicules pileux
- Les glandes sébacées
- Les glandes sudoripares
- Les ongles

On peut voir certaines de ces structures sur la photo ici.

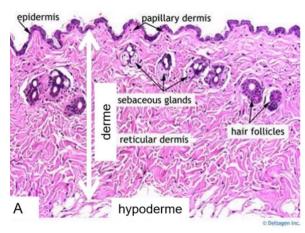


Figure A: coupe histologique de la peau. (MO, HE). Faible grossissement.

II. Épiderme

- ❖ L'épiderme : épithélium stratifié pavimenteux kératinisé = épithélium malpighien kératinisé. ++++
- Constitué de 4 types cellulaire :
 - Les kératinocytes : représente 80% des cellules épidermiques.
 - Les mélanocytes
 - Les cellules de Langerhans
 - Les cellules de Merkel

Les 20% d'autres cellules sont dispersées entre les kératinocytes.

→ La présence d'autres types cellulaires dans l'épiderme est pathologique.

- **❖** L'épiderme n'est pas vascularisé. +++
 - → Il est nourri par <u>imbibition</u> par les réseaux capillaires des papilles dermiques.
- **❖** L'épiderme est innervé. ++
 - → Contient des terminaisons nerveuses <u>sensitives</u>.
- ❖ L'épaisseur de l'épiderme est de 100 microns en moyenne.
 - → Plus épais au niveau palmo-plantaire.

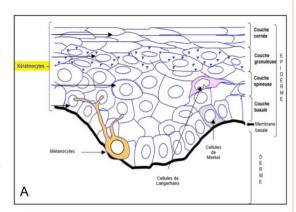
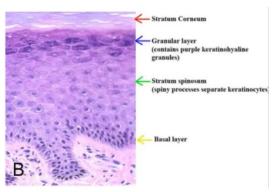



Figure A: représentation schématique de l'épiderme

A. <u>Kératinocytes</u>

- Les kératinocytes proviennent de l'épiblaste secondaire.
 - → En migrant de la profondeur vers la surface, ils donnent à l'épiderme ses caractéristiques morphologiques :
 - Stratification en plusieurs couches
 - Cellules superficielles pavimenteuses et anucléées

- ❖ Se répartissent dans 4 couches bien visibles en MO dénommée de la profondeur vers la superficie :
- Couche basale
- Couche spineuse
- Couche granuleuse
- Couche cornée
- ❖ La migration des kératinocytes de la couche basale vers la couche cornée se fait normalement en 3 à 4 semaines.

Vous pouvez le voir sur la figure B une coupe histologique de l'épiderme en microscopie optique avec coloration hématoxyline- éosine à grossissement moyen. Sur cette coupe vous pouvez voir les différentes couches de l'épiderme.

Nous allons maintenant décrire ces 4 couches de l'épiderme successivement en microscopie optique et en microscopie électronique.

Le tutorat est gratuit. Toute reproduction ou vente est interdite.

EN MISCROSCOPIE OPTIQUE

La couche basale	 Constituée par une assise unique de kératinocytes cubiques ou cylindriques. Directement en contact avec la jonction dermo-épidermique. Parmi les kératinocytes basaux se trouvent les cellules souches qui assurent le renouvellement de l'épiderme d'où la présence de cellules en mitose dans la couche basale. 		
La couche spineuse	 Constituée de plusieurs assises de kératinocytes polygonaux. Leurs contours apparaissent hérissés d'épines d'où le nom de couche spineuse. Ces épines correspondent aux desmosomes qui accrochent les kératinocytes entre eux. Figure B: coupe histologique de l'épiderme. (MO, HE). Fort grossissement. Couche spineuse. Visualisation des épines.		
La couche granuleuse	 Constitué par plusieurs assises de cellules aplaties, aux grands axes parallèles à la jonction dermo-épidermique. L'apparition dans le cytoplasme des kératinocytes de granulation basophiles est à l'origine de l'appellation couche granuleuse. Figure B: coupe histologique de l'épiderme. (MO, HE). Fort grossissement. (1) couche spineuse, (2) couche granuleuse, (3) couche cornée. Visualisation des granulations dans la cellules de la couche granuleuse.		
La couche cornée	 Constituée par plusieurs assises de cellules aplaties, anucléés appelées cornéocytes. 		

EN MISCROSCOPIE ÉLECTRONIQUE

La microscopie électronique révèle des	Des mélanosomes de stade IV
marqueurs caractéristiques de la	Des tonofilaments
différenciation des kératinocytes	Des hémidesmosomes
·	Des desmosomes
Dans la couche granuleuse	Les grains de kératohyaline
_	Les kératinosomes
	Les cornéodesmosomes
Dans la couche cornée	Le ciment intercornéocytaire
	L'enveloppe cornée

Les tonofilaments	 Ce sont des <u>filaments intermédiaires</u> de 10 nm de diamètre. Rassemblés en trousseaux. <u>Disparaissent dans la couche cornée</u> où ils sont remplacés par des filaments intermédiaires organisés en réseau.
	 ❖ Ce sont des systèmes de jonction sur lesquels s'ancrent les tonofilaments. → Les hémidesmosomes accrochent les kératinocytes basaux à la lame basale.
Les hémidesmosomes et desmosomes	 → Les desmosomes accrochent les kératinocytes entre eux.
Figure 10: Kératinocyte de la couche basale de l'épiderme en microscopie électronique: 1 = tonofilaments; 2 = desmosome, 3 = hémidesmosome	 Les desmosomes sont : Très nombreux au niveau de la couche spineuse au niveau des interdigitations de la membrane cytoplasmique vues en microscopie optique. Au niveau de la couche cornée, ils deviennent des cornéodesmosomes avec une ligne dense intercellulaire très épaisse.
Les mélanosomes de stade IV	Ils sont phagocytés en grand nombre par les <u>kératinocytes basaux</u> à partir des mélanocytes où ils ont été produits.
	❖ Ils persistent plus ou moins dans <u>les couches</u> <u>suprabasales</u> suivant le phototype cutané.

- Les grains de kératohyaline et les kératinosomes sont caractéristiques et spécifiques des kératinocytes de la couche granuleuse de l'épiderme.
 - → Ce sont des marqueurs de la <u>différenciation épidermique terminale</u>.
 - → Ils disparaissent dans la couche cornée.

Les grains de kératohyaline	Les kératinosomes
 ★ Très dense aux électrons ★ Grands, étoilés ★ Correspondent aux grains basophiles vue en microscopie optique. 	 ★ Petits et trop petits pour être visibles en microscopie optique. ★ Ovalaires entourés d'une membrane. ★ Contiennent des lamelles lipidiques.

Les kératinosomes migrent progressivement de la région périnucléaire à proximité de l'appareil de Golgi vers la membrane cytoplasmique avec laquelle ils fusionnent.

Finalement ils déversent dans l'espace inter-cellulaire leur contenu qui est à l'origine du ciment intercornéocytaire.

Fig. 9. Couche granuleuse (CG) et couche cornée (CC) en microscopie électroniqu à très fort grossissement : décharge du contenu des kératinosomes dans l'espac intercellulaire à l'interface couche granuleus-couche cornée.

- La ME montre que la **couche cornée** est formée de **cornéocytes** avec leur **enveloppe cornée** caractéristique et du **ciment intercornéocytaire**.
 - O L'ensemble est souvent comparé à un mur dont les briques seraient constituées par des cornéocytes assemblées par le ciment intercornéocytaires.
- L'enveloppe cornée apparaît comme <u>un épaississement de</u> 15 à 20 nm à la face interne de la membrane plasmique.
- Le ciment intercornéocytaire est formé de <u>lamelles lipides</u> provenant de la transformation des lamelles lipidiques des kératinosomes.
- Le noyau des kératinocytes et tous les organites cytoplasmiques ont disparu.

Nb : Les termes ciment intercornéocytaire et cément intercornéocytaire sont synonymes.

Figure A Cornéocytes et cément intercornéocytaire à la partie profonde de la couche cornée en microscopie électronique à grossissement moyen : filaments intermédiaires en réseau (simple flèche), enveloppe cornée (double flèche), * cément intercornéocytaire.

FONCTIONS

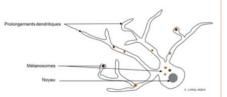
Les kératinocytes assurent 3 grandes <u>fonctions</u> qui sont liées à des structures morphologiquement individualisables.		
1- La cohésion de l'épiderme et	En rapport avec <u>le cytosquelette et les systèmes de</u>	
sa protection contre les	jonction des kératinocytes entre eux.	
agressions mécaniques		
2- Une fonction de barrière	En rapport avec <u>la différenciation terminale des</u>	
entre les milieux intérieurs et	cornéocytes.	
extérieurs		
	En rapport avec <u>les mélanosomes de stade IV qu'ils</u>	
3- La protection contre les	ont phagocytés.	
radiations lumineuses UV	Nb: c'est une fonction partagée avec les	
	mélanocytes	

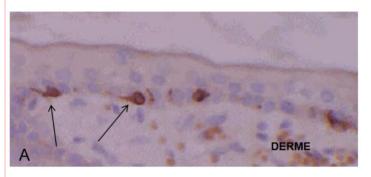
Nb : Les kératinocytes participent aussi à la synthèse de vitamine D (Figure 1)

B. Les autres types cellulaires

1. Mélanocytes

- Les mélanocytes constituent la **2ème population** cellulaire de l'épiderme.
 - o Proviennent de la crête neurale.


Figure A: coupe histologique de l'épiderme montrant des mélanocytes (MO, HE). Grossissement moyen.


Fonction: La synthèse de pigments appelés mélanines (phéomélanines et eumélanines) dans des organites spécialisés appelés mélanosomes.

EN MISCROSCOPIE OPTIQUE

	 Elle varie avec la technique de préparation des échantillons. Après fixation et coloration standard : 		
La morphologie des mélanocytes en MO	→Ils apparaissent le plus souvent comme des <u>cellules arrondies et</u> <u>claires</u> , à noyau rond et dense.		
,	→Sont situés entre les kératinocytes basaux de l'épiderme et faisant souvent saillie dans le derme.		
	→Les dendrites ne sont pas vues.		
	Les mélanocytes apparaissent franchement comme des cellules		
	dendritiques :		
Après congélation et	- Avec un <u>corps cellulaire</u> situé entre les kératinocytes		
DOPA réaction ou étude	basaux de l'épiderme.		
immunohistochimique	- Avec des <u>prolongements dendritiques</u> entre les		
	kératinocytes supra- basaux.		
	→ L'ensemble formant une unité de mélanisation.		

- Plusieurs réactions immunohistochimiques réalisables sur coupes en paraffine ont été mises au point.
 - o Notamment pour le diagnostic des tumeurs mélaniques
 - Par exemple l'anticorps HMB-45.

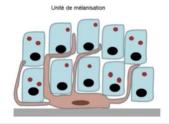
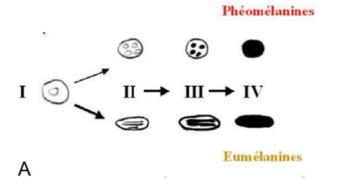
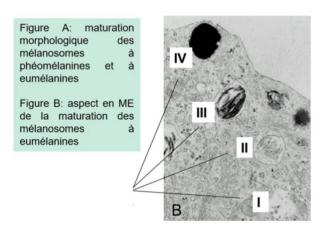


Figure A: coupe histologique de l'épiderme montrant des mélanocytes (MO, coloration immunohistochimique avec l'anticorps HMB-45)

-> Mélanocytes


EN MICROSCOPIE ÉLECTRONIQUE


À faible grossissement	 Les mélanocytes apparaissent entre les kératinocytes basaux. Comme des cellules claires, sans tonofilaments, faisant saillie dans le derme.
À fort grossissement	Ils possèdent des organites pathognomoniques les mélanosomes.

- ➤ On distingue les mélanosomes à **eumélanine** et à **phéomélanine** :
 - o Ils diffèrent morphologiquement.

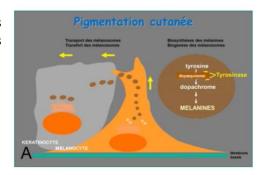
Mélanosomes à eumélanine	Mélanosomes à phéomélanine
 ★ Allongés ★ Contiennent des lamelles allongées dans le sens de leur longueur qui vont progressivement se charger en mélanine et devenir ainsi très dense aux électrons. 	 ★ Vésicules arrondies ★ Contenant en elles de plus petites vésicules qui se chargent progressivement en mélanines et deviennent de plus en plus dense aux électrons.

➤ 4 stades de maturation des mélanosomes sont décrits morphologiquement aussi bien pour les mélanosomes à eumélanine que pour les mélanosomes à phéomélanine.

Les mélanines ont 2 fonctions :

- → 1er Elles donnent à la peau sa pigmentation.
 - Les phéomélanines étant des pigments jaune rouge.
 - Les eumélanines étant des pigments bruns noirs.
 - > On distingue:
 - o La pigmentation constitutive de la peau.
 - La **pigmentation facultative** appelée <u>bronzage</u> qui apparaît après exposition aux rayons UV.

	Par convention, en fonction de la couleur constitutive de la peau et de ses capacités à développer une pigmentation sous l'effet des rayons ultra-violets, on distingue 6 phototypes cutanés.		
Type I	 peau blanche brûle toujours ne bronze jamais 	Type IV	 peau mate brûle peu bronze toujours bien
Туре ІІ	 peau blanche brûle facilement bronze peu et avec difficulté 	Type V	peau brune brûle rarement bronze intensément
Type III	- peau blanche - brûle peu - bronze progressivement	Type VI	 peau brun fonçé à noir ne brûle jamais bronze intensément et profondément


- ➤ Par convention on distingue 6 phototypes cutanées en fonction de la pigmentation constitutive et facultative de la peau.
- → <u>Le phototype cutané ne dépend pas de la densité en mélanocytes</u> ++ qui est sensiblement identique pour une zone cutanée donnée quel que soit le phototype.
- → Il dépend de la quantité de phéomélanine et d'eumélanine dans les mélanosomes.

→Il dépend de la quantité des mélanosomes dans les mélanocytes et de la répartition des mélanosomes dans l'épiderme.

Les différents phototypes cutanés en ME

	Mélanocytes	Kératinocytes basaux	Kératinocytes superficiels	Mélanophages
I/II	Mélanosomes à phéomélanine	Quelques mélanosomes	Pas de mélanosomes	Non
III/IV	Mélanosomes à eumélanine Peu nombreux Petits	Mélanosomes en paquets	Pas de mélanosomes	Non
V/VI	Mélanosomes à eumélanine Gros Nombreux	Mélanosomes isolés	Persistance de mélanosomes	Oui

- → 2ème Jouent un rôle vis à vis de l'effet carcinogène des UV.
- → Les **eumélanines** ont un rôle **protecteur** vis à vis des UV.
- → En revanche les **phéomélanines** pourraient avoir un rôle carcinogène sous l'action des UV.
 - Les mélanosomes matures sont transportés vers <u>l'extrémité des dendrites</u>, puis transférés dans les kératinocytes.

- Le transport des mélanosomes matures jusqu'à l'extrémité des dendrites des mélanocytes se fait le long des filaments d'actine grâce à 3 molécules :
 - → Myosine V (Myo-VA)
 - → Rab27a
 - → Mélanophiline (Mlph)

C'est dans le laboratoire Inserm du docteur Ballotti à Nice que le rôle essentiel de Rab27a dans le transport des mélanosome a été découvert.

Actin Myo-VA Miph Globular tal Head Neck Medial tal F-exon SHD N Rab27a N Rel F-exon PA: R35W

2. Cellules de Langerhans (CL)

- Constituent la 3ème population cellulaire de l'épiderme : 3 à 8% des cellules épidermiques (non dit).
 - → Proviennent de la moëlle hématopoïétique.

EN MISCROSCOPIE OPTIQUE

Après coloration standard	Les CL apparaissent comme <u>des cellules claires</u> situées le plus souvent au niveau de <u>la couche granuleuse</u> .
Après congélation et immunohistochimie des antigènes membranaires (comme la molécule CD1a)	Les CL apparaissent franchement comme des <u>cellules</u> dendritiques avec un corps cellulaire situé le plus souvent au niveau de <u>la couche granuleuse</u> et <u>des prolongements</u> entre les kératinocytes supra-basaux.

EN MISCROSCOPIE ÉLECTRONIQUE

- Apparaissent comme les <u>cellules claires</u> qui ne contiennent pas de tonofilaments et n'établissent pas de desmosomes avec les kératinocytes avoisinants.
- → Elles se caractérisent par la présence pathognomonique de **granules de Birbeck** en forme de raquette de tennis.

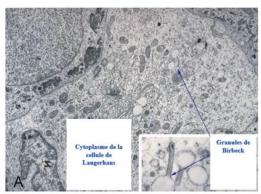
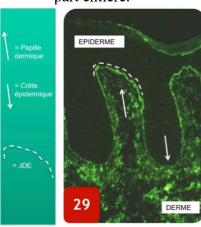


Figure A. Aspect en microscopie électronique des granules de Birbeck dans le cytoplasme d'une CL

- Les CL appartiennent au groupe <u>des cellules</u> <u>présentatrices d'antigènes</u> aux lymphocytes T, transépithéliales.
- Dans l'épiderme, elles vont capturer les exoantigènes, les transformer, et les ré-exprimer en surface avec les molécules de classe II du CMH.
- → Elles vont ensuite rejoindre les ganglions lymphatiques où elles présentent l'antigène aux lymphocytes T CD4+.

3. Cellules de Merkel (CM)

Les CM constituent la **4ème population cellulaire** de l'épiderme.


On pensait qu'elles provenaient de la crête neurale, mais on aurait plutôt tendance à penser actuellement qu'elles proviennent de l'ectoderme.

Les CM ne sont pas identifiables en MO standard.

- En immunohistochimie, elles expriment à la fois des marqueurs neuronaux et épithéliaux notamment la cytokératine K20 qui est détectable sur coupes en paraffine.
- En microscopie électronique, les CM de l'épithélium interfolliculaire apparaissent en général entre les kératinocytes basaux, au contact d'une terminaison nerveuse, avec dans leur cytoplasme de très nombreuses « vésicules à cœur dense » caractéristiques :
 - ✓ Vésicules à centre très dense aux électrons, entouré d'un halo clair.
- **Elles ont des fonctions sensorielles.**

III. <u>Jonction dermo-épidermique (JDE)</u>

- La JDE comme son nom l'indique sépare l'épiderme et le derme.
- La complexité de sa structure et son importance fonctionnelle en font une zone à part entière.

- En microscopie optique, la JDE n'est pas identifiable après coloration de routine, elle peut être visualisée grâce à des colorations spéciales comme le PAS ou par immunofluorescence (comme sur la photo à côté).
- → Elle apparaît <u>entre les kératinocytes basaux et le derme papillaire</u> comme <u>une ligne ondulée, fine et homogène</u> où alternent :
- ✓ Les saillies de l'épiderme dans le derme dites crêtes épidermiques.
- ✓ Les saillies du derme dans l'épiderme dites papilles dermiques.

Dédi à Louis qui aime bien les membres du BDE lol Dédi à Emma qu'on a jamais vu avant 10h à la bu