Semaine 4 : Poursuite organogenèse

Formations des membres & des vertèbres + pathologies

Formation des bourgeons des membres

Les membres dérivent de **l'axe mésenchymateux** qui donnera la structure <u>ostéo-articulaire</u> (les os, cartilages, muscles, tendons et vaisseaux) qui sera entièrement recouverte **d'épiblaste II** (peau & annexes).

1ère étape : bourgeonnement des membres (4ème semaine)

Deux petites <u>évaginations/excroissances</u> <u>mésoblastiques</u> recouvertes d'épiblaste II apparaissent sur les faces **latérales** de l'embryon sous <u>l'induction des somites</u> :

- occipito-thoracique (région cervico-thoracique) à 124 pour les membres supérieurs
- lombaires (région lombo-sacrée) à 28 pour les membres inférieurs

2ème étape : allongement des bourgeons (6ème semaine)

Ces bourgeons vont s'allonger et former 2 segments séparés par 1 sillon. On distingue donc :

- un segment <u>distal</u> aplati en forme de palette qui donnera la <u>future main</u>
- un segment <u>proximal</u> qui garde une forme <u>cylindrique</u> pour aboutir à la formation <u>du bras et</u> <u>de l'avant-bras</u>

3ème étape : formation des doigts (7ème semaine)

Au niveau du segment **distal** (en palette), il y a apparition de <u>4 sillons radiés</u> qui permettent de séparer <u>5</u> rayons digitaux (doigts).

Ces 5 rayons sont donc d'abord séparés par un <u>tissu intercalaire mésoblastique</u> avant que celui-ci ne régresse par **apoptose** pour les individualiser.

ATTENTION : les doigts <u>NE se forment donc PAS par bourgeonnement</u> mais par apoptose, il existe d'ailleurs des pathologies dues à un défaut d'apoptose de ce tissu (ex : syndactylie)

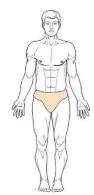
4ème étape : nouveau sillon, flexion et rotation des membres (8ème semaine)

Au niveau du segment **proximal** (cylindrique), il y a apparition d'un nouveau sillon qui divise ce segment en 2.

On obtient donc 3 segments:

1. **proximal** : proche de l'épaule, formera le <u>bras</u>

2. **médian** : formera <u>l'avant-bras</u>


3. **distal** : formera la main

Le segment <u>médian</u> va venir se replier sur le segment <u>proximal</u> par un mouvement de <u>flexion</u>: ce qui correspond à une flexion de *l'avant-bras sur le bras* et de la *jambe sur la cuisse*. Les articulations présentent entre ces segments permettant la flexion sont le coude et le genou.

Après ce phénomène de flexion, on va assister à un mécanisme <u>rotation</u> à 90° des membres :

- externe pour le membre supérieur
- **interne** pour le membre <u>inférieur</u>

En <u>position anatomique</u>, on retrouve bien le petit doigt contre la cuisse (rotation externe) et les pouces du pied vers la face intérieur (rotation interne)

Suite à ces 4 étapes les bourgeons vont pouvoir <u>s'allonger</u> par <u>rajout de cellules mésenchymateuses</u> qui vont se **condenser** puis se **différencier** en <u>cartilage</u> puis en <u>os</u>, et ce de façon totalement différente en proximal et en distal.

On détermine 3 axes de <u>différenciation</u> de pour former les 3 parties du membre :

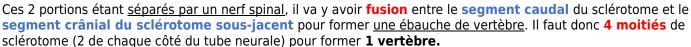
Axe proximo-distal	Permet la différenciation des tissus de l'épaule aux doigts pour le membre sup. et de la racine de la cuisse au pied pour le membre inf.	Membre supérieur
Axe antéro-postérieur	Permet la différenciation du 1^{er} rayon digital au 5^{ème} (pouce à l'auriculaire par ex)	D V
Axe dorso-ventral	Permet la différenciation du dos de la main et de la paume et du dos et de la plante du pied	Post

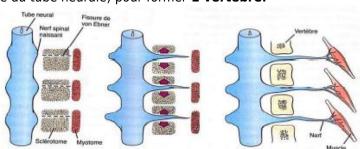
A <u>l'extrémité</u> des membres on pourra donc observer <u>3 centres de régulation</u> qui vont contrôler la **croissance** de l'axe **proximo-distal** et **l'asymétrie** des axes **dorso-ventral** et **antéro-postérieur.**

La crête apicale ectodermique (AER)	Se trouve à la partie la plus <u>distale</u> du membre. Elle est responsable de la <u>croissance</u> dans l'axe promixo-distal grâce à une prolifération accélérée et intense de mésenchyme indifférencié .
La zone d'activité polarisante (ZPA)	Elle permet de mettre en place l'asymétrie / la différenciation entre la partie antérieure et postérieure du membre
L'épiblaste secondaire	Permet la différenciation entre l'axe dorsal et ventral

Le membre s'agrandit donc par son extrémité **distale** au niveau de l'AER, à la fin du **second mois** environ on pourra dire que les membres ont acquis leur *morphologie définitive*.

Formation des vertèbres


La formation des vertèbres dérive du **sclérotome** qui vient migrer :


- autour de la chorde pour former le corps vertébral
- autour du tube neural pour former les arcs vertébraux et processus épineux

Les portions <u>latérales</u> du sclérotome formeront les apophyses transverses et les côtes.

Le sclérotome va se différencier en 2 parties :

- <u>caudale</u> : très dense et proliférative
- **crâniale** : peu dense, permettant la migration des cellules des crêtes neurales (nerf spinal) entre ces 2 portions de sclérotome

Les nerfs spinaux sont connectés à des **faisceaux musculaires** en périphérie, ces muscles (myotome) sont à <u>cheval entre 2 vertèbres</u> permettant ainsi d'assurer la **rigidité** du rachis et les mécanismes de **flexion** – **rotation**. **Pathologies de l'organogenèse 1 et de la morphogenèse 1 et 2 :**

L'embryon subit divers mécanisme de transformation, différenciation pour aboutir à la mise en place de tous les organes, des malformations congénitales graves peuvent donc altérer son développement.

A ce stade, l'embryon est très sensible :

- aux agents tératogènes (substances pouvant entrainer des malformations de l'embryon) comme :
 - o les **toxiques** : alcool, tabac, stupéfiants
 - o les **médicaments** (iatrogénie) :
 - <u>Distilbène</u>: prescrit aux femmes enceintes pour prévenir les fausses couches: entraînait des malformations génitales et infertilités chez le fœtus féminin
 - <u>Dépakine</u>: anticonvulsant pour femmes enceintes épileptiques responsable de malformations sévères, non viables ainsi que de mort fœtale
 - Thalidomide : prescrit contre les nausées chez les femmes enceinte, responsable de phocomélie
 - > Certains médicaments anodins comme les anti-inflammatoires, antibiotiques
- aux radiations ionisantes
- aux infections virales et parasitaires (rubéole, toxoplasmose, CMV, VIH,...)

Or à ce stade, la mère **ignore** souvent qu'elle est enceinte donc ++ de risques.

Les <u>mécanismes complexes de cloisonnement</u> du cœur expose aussi l'embryon à des **malformations cardiaques** comme :

• La Tétralogie de Fallot « maladie cyanogène, enfant bleu » :

Cette maladie est dite <u>cyanogène</u> car l'enfant **est faiblement oxygéné** par le sang qui en contient trop peu à la naissance. Il y a persistance d'une **communication interventriculaire**, donc un mélange de sang veineux, appauvri en oxygène (VD) et de sang riche en oxygène (VG) ⇒ un sang appauvri en oxygène éjecté dans <u>l'aorte</u>.

Cette anomalie est associée à d'autres problèmes comme :

- une sténose (diminution du diamètre) des valves pulmonaires (entre le VD et l'artère pulmonaire) : le sang a du mal à être éjecté entrainant une hypertrophie car le muscle se contracte de plus en plus pour aider le sang à passer l'obstacle ⇒ surcharge de travail pour le cœur
- une malformation de l'aorte qui se positionne « à cheval » sur le septum interventriculaire et communique donc avec les 2 ventricules, on encore expulsion d'un sang appauvri en oxygène.

On peut aussi rencontrer des **malformations des membres**, détectées à <u>l'échographie</u>. Ils peuvent être anormaux, absents en totalité ou partiellement :

Malformations réductrices

A mélie	Membre absent
Phocomélie	Membre court
Micromélie	Diminution du <i>volume</i> global du membre
Ectrodactylie	Absence d'un ou plusieurs doigts/orteils
Achondroplasie	Diminution de la <i>longueur</i> globale du membre

Malformations surnuméraires

Polydactylie : doigts/orteils surnuméraires

Syndactylie	Fusion d'un ou plusieurs doigts/orteils
Achrodolichomélie	Mains ou pieds disproportionnés / trop grand