BIOPHY DE LA CIRCULATION

SOMMAIRE:

- I. Bases physiques
- II. Statique d'un fluide
- III. Dynamique d'un fluide
 - A. Idéal
 - B. Réel
- IV. Particularités
 - A. Liées au sang
 - B. Liées à l'anatomie

I. BASES PHYSIQUES

■ Un <u>fluide</u> est un <u>milieu matériel déformable</u> qui s'écoule.

√ gazeux : déformable + compressible

√ liquide : déformable mais incompressible

2 catégories de fluides :

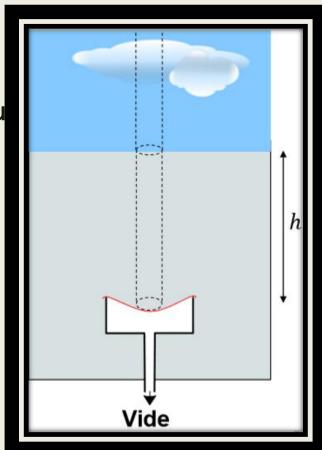
■ Parfait = idéal : sans frottements, la viscosité n'entre donc pas en jeu

Réel : avec frottements, la viscosité joue un rôle important

2 types de mécanique

■ STATIQUE : caractérisée par une PRESSION

Les fluides réels et idéaux ont le même comportement.


■ DYNAMIQUE : caractérisée par un DEBIT

Les fluides réels et idéaux ont des comportements différents.

II. STATIQUE D'UN FLUIDE

 La pression statique P correspond au poids de la colonne de fluide qu s'applique sur une paroi.

Elle se manifeste par la déformation de la paroi

■ Pression relative : poids de la colonne de liquide qui s'applique sur le capteur de pression = effet de la colonne de liquide :

La pression relative se calcule avec cette formule :

$$\Delta P = \rho g h$$
 $\rho = masse\ volumique$
 $g = accélération\ de\ la\ pesanteur$
 $h = hauteur\ de\ la\ colonne\ de\ liquide$

■ Pression absolue : poids de la colonne de liquide à laquelle s'ajoute celle de la pression atmosphérique.

■ Pabsolue = Prelative + Patmosphérique

1) <u>DIMENSION DE LA PRESSION</u>

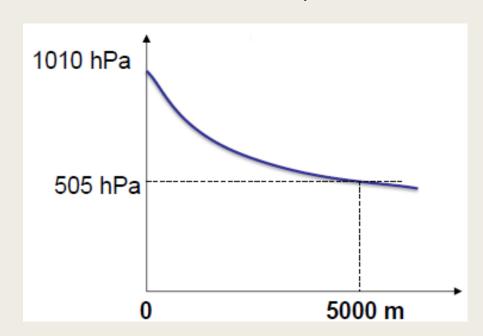
Force par unité de surface	Energie par unité de volume
$[P] = \frac{[F]}{[S]}$ $[P] = \frac{M \cdot L \cdot T^{-2}}{L^{2}}$ $[P] = M \cdot L^{-1} \cdot T^{-2}$	$[P] = \frac{[E]}{[V]}$ $[P] = \frac{M \cdot L^2 \cdot T^{-2}}{L^3}$ $[P] = M \cdot L^{-1} \cdot T^{-2}$

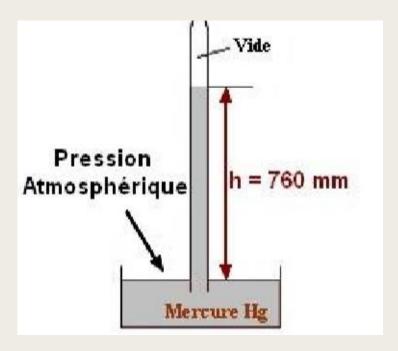
2) <u>UNITÉS DE LA PRESSION</u>

Le Pascal:

unité du SI

 $1 \text{ Pa} = 1 \text{ N. m}^{-2}$


Unité faible à l'échelle des pressions : utilisation des multiples (1hPa=100Pa).


Le bar (ancienne unité) : $1bar = 10^5 Pa$

Le millimètre de mercure (mmHg), le centimètre d'eau (cmH2O)...

3) LA PRESSION ATMOSPHÉRIQUE

- C'est le poids de la colonne d'air atmosphérique.
- Elle varie avec l'altitude ou la profondeur.

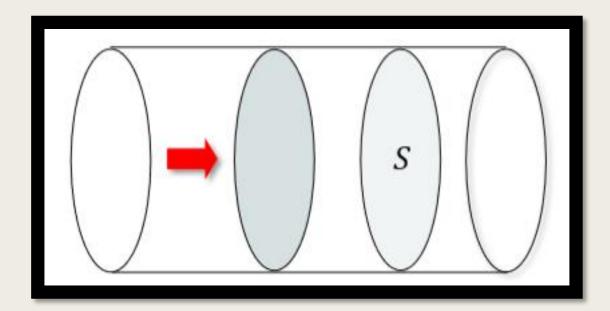
$$P_{atm} = 1013 hPa$$

4) PRINCIPE ET LOIS DE PASCAL

<u>Principe de Pascal</u>: Dans un fluide immobile incompressible, une variation de pression se transmet intégralement et dans toutes les directions.

<u>1ère loi</u>: La pression est la même dans toutes les directions (indépendante de l'orientation du capteur).

2ème loi : La pression est la même en tout point de même profondeur ou altitude).

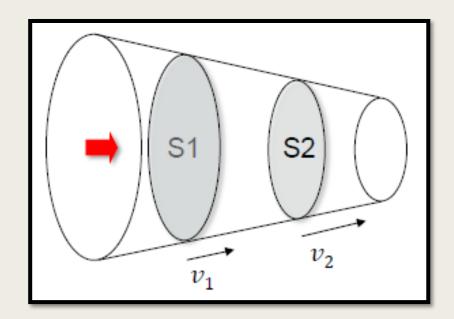

3ème loi : La différence de pression entre 2 points est proportionnell leur différence de hauteur.

II. DYNAMIQUE D'UN FLUIDE

A) DYNAMIQUE D'UN FLUIDE IDÉAL

Un débit (Q) est un volume (V) qui traverse une section (S) par unité de temps.

$$Q = S \times V$$


1) PRINCIPE DE CONTINUITÉ DU DÉBIT

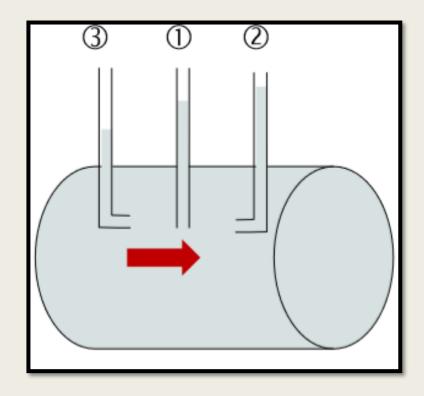
<u>3 hypothèses</u>:

- Le fluide est incompressible: sa masse volumique ρ est constante.
- Le fluide s'écoule en **régime stationnaire** : sa vitesse en 1 point est constante.
- La section du tuyau dans lequel s'écoule le fluide est variable.

1) PRINCIPE DE CONTINUITÉ DU DÉBIT

■ Lorsqu'un fluide incompressible circule en régime stationnaire dans un conduit dont la section varie, le débit sera constant tout au long du circuit :

$$Q_1 = Q_2 = S_1.v_1 = S_2.v_2$$


2) ÉCOULEMENT D'UN FLUIDE IDÉAL ET ÉQUATION DE BERNOULLI

- Un fluide idéal s'écoule selon 3 types de pressions :
- Pression de pesanteur = ρgh
- Pression cinétique = $\frac{1}{2} \rho v^2$
- Pression statique=latérale= P
- Comme il n'y a pas de frottements, la pression totale de ce fluide est constante,
 c'est l'équation de BERNOULLI :

Pression totale = $\rho gh + \frac{1}{2} \rho v^2 + P = constante$

3) MESURE DES PRESSIONS

Dans un fluide en écoulement, les valeurs mesurées dépendent de l'orientation du capteur.

① Pression latérale ou pression statique:

P

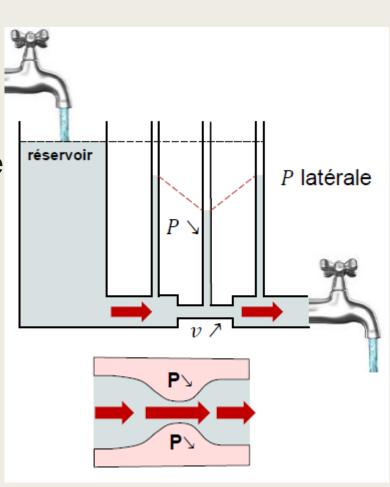
② Pression « terminale »:

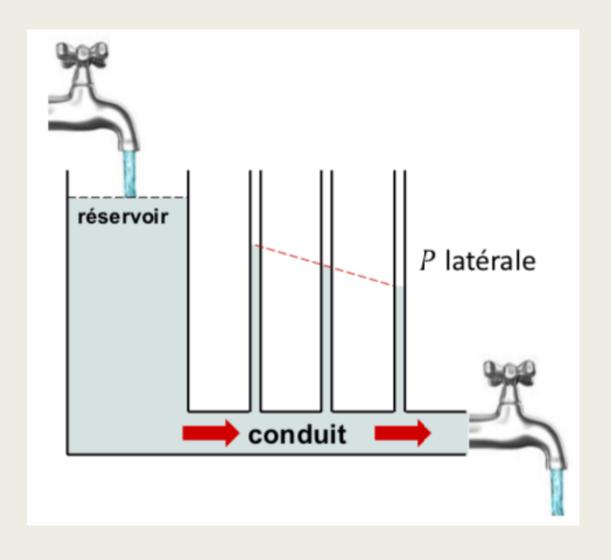
$$P_T = P + 1/2\rho v^2$$

③ Pression « d'aval »:

$$P_A = P - 1/2\rho v^2$$

4) CAS PARTICULIER : ÉCOULEMENT HORIZONTAL

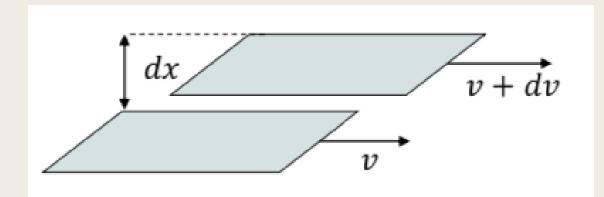

 La pression totale se répartit entre la pression cinétique et la pression statique car la pression de pesanteur s'annule (h=0).


Une variation de section entraîne une :

Variation de la vitesse du fluide (inversement proportionne pour maintenir le débit constant selon Q = S.V

Si la section diminue (par exemple en cas de sténose d'une artère), la vitesse augmente et donc la pression cinétique augmente aussi : c'est l'effet VENTURI.

Pour compenser, la pression latérale P diminue



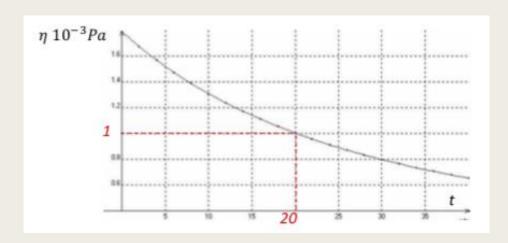
PERTE DE CHARGE

- → Viscosité: due aux frottements (entre molécules du fluide) → Énergie consommée sous forme de chaleur
 → PERTE D'ENERGIE UTILISABLE
- → L'équation de Bernoulli n'est plus valide

$$Et = mgh + 1/2 mv^2 + PV \neq constante$$

 $Pt = \rho gh + 1/2 \rho v^2 + P \neq constante$

VISCOSITÉ (entre 2 lames de fluides)


$$\eta = kg.m^{-1}.s^{-1} = Pa.s = Poiseuille (PI)$$

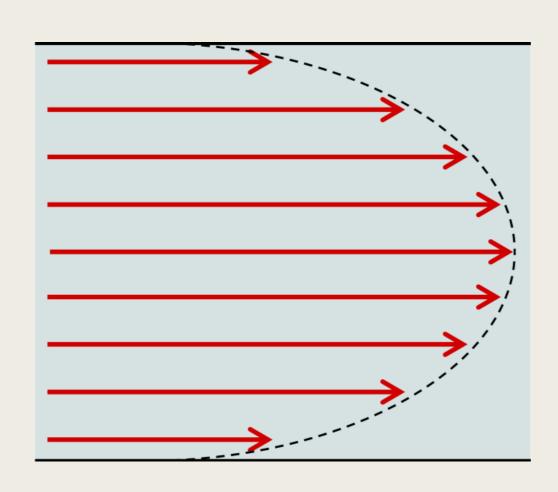
→ Si le taux de cisaillement augmente, la viscosité diminue

```
F=\eta\,S\,dv/dx (Newton) S= \text{surface commune aux 2 lames} \\ dv/dx= \text{gradient de vitesse (« taux de cisaillement »)} \\ \eta= \text{viscosit\'e}\, (\textit{constante caract\'eristique du liquide})
```

→ LIQUIDES NEWTONIENS :

- η varie seulement avec la **température** (si T augmente, η diminue)

η est **constante** pour une **T donnée**


→ LIQUIDES NON-NEWTONIENS :

- η varie avec T et le taux de cisaillement dv/dx, donc n'a plus de sens ici
- viscosité apparente : celle qu'aurait un fluide newtonien avec le même Q et le même ΔP
- ex : le sang → η augmente
 (rouleaux de GR) lorsque dv/dx
 diminue

→ ECOULEMENT LAMINAIRE

Vitesse faible, viscosité = facteur de cohérence

- Couche très mince au contact de la paroi ne se déplace pas
- -Les lignes de courant ne se croisent pas
- -La vitesse est maximale au centre
- -Profil parabolique des vitesses

→ ECOULEMENT TURBULENT

Vitesse moyenne/élevée, viscosité =/= facteur de cohérence

- Trajectoire individuelles tourbillonnent
- -Les lignes de courant se croisent
- -Pas de distribution systématisée des vitesses

→ ÉCOULEMENT LAMINAIRE OU TURBULENT?

→ 4 paramètres :

- vitesse moyenne d'écoulement v
- diamètre du conduit d
- masse volumique du liquide ρ
- viscosité η

- = facteurs de **turbulence**
- → Facteur de cohésion

NOMBRE DE REYNOLDS

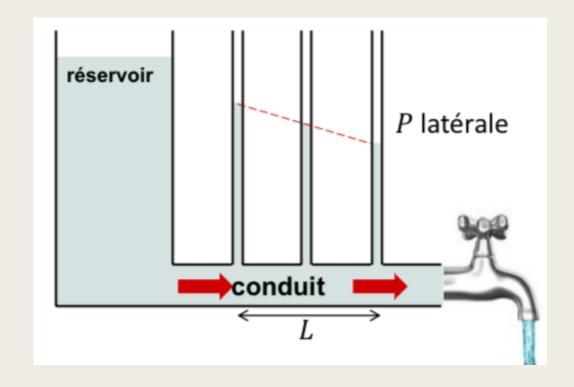
$$Re = \frac{\rho dv}{\eta}$$

Si Re < 2 000 → régime laminaire Si Re > 10 000 → régime turbulent

→ Régime instable entre les 2

VITESSE CRITIQUE

$$v_c = \frac{2000\eta}{\rho d}$$

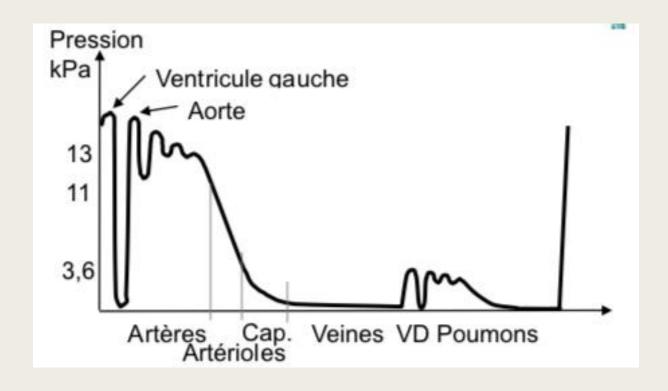

→ Vitesse au-delà de laquelle le régime laminaire n'est plus garanti

LOI DE POISEUILLE

→fluide réel en écoulement laminaire

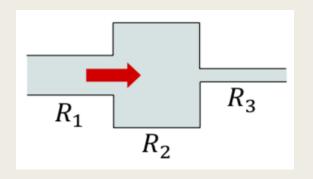
$$Pt = \rho gh + \frac{1}{2}\rho v^2 + P + chaleur = cte$$

$$\Delta P = Q \, \frac{8\eta L}{\pi r^4}$$
 $Q = \text{d\'ebit}$ $L = \text{distance}$ $\eta = \text{viscosit\'e}$ $r = \text{rayon du conduit}$

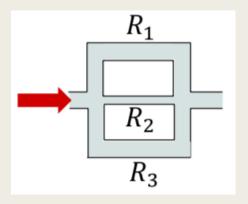

LOI DE POISEUILLE

→ Résistances à l'écoulement définies par

$$R = \frac{8\eta L}{\pi r^4}$$


→ Donc on peut écrire :

$$\Delta P = Q \times R$$


CONDUITS EN SÉRIE

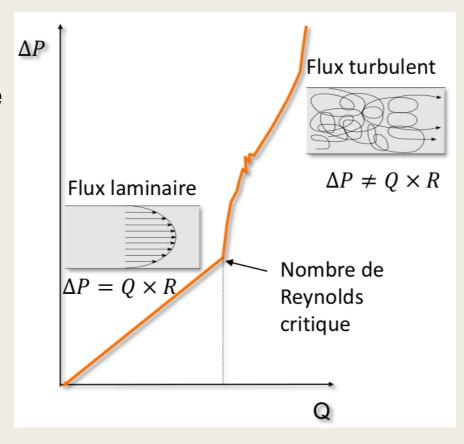
$$R_t = R_1 + R_2 + \dots + R_n = \sum_{i=1}^{n} R_i$$

CONDUITS EN PARALLÈLES

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

→ Les résistances s'ajoutent

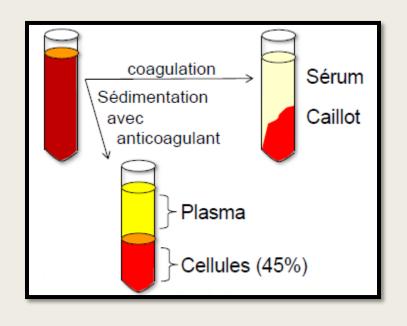
→ Les **inverses** des résistances s'ajoutent


→ DIFFÉRENTS ÉCOULEMENTS

→ LAMINAIRE

→ E pour vaincre viscosité

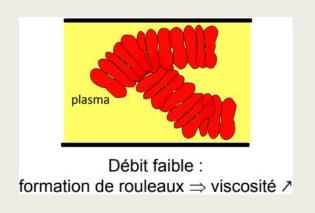
$$Pt = \rho gh + \frac{1}{2}\rho v^2 + P + chaleur = cte$$

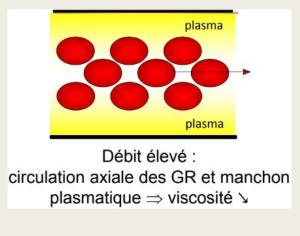

- → Relation linéaire entre le gradient de P et le débit
- → Loi de **Poiseuille** valable

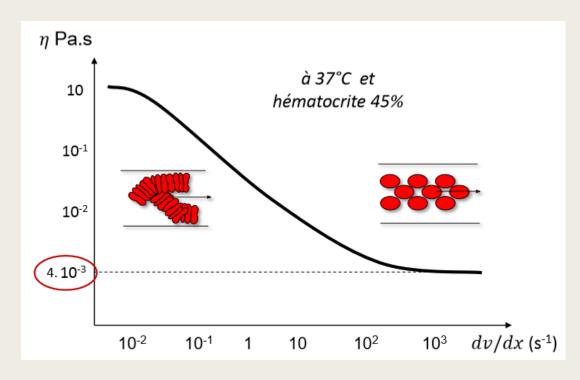
→ TURBULENT

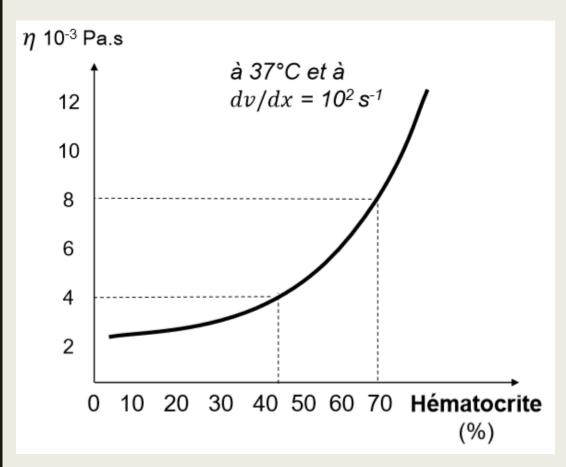
- → gradient de P et Q plus proportionnel
- → Tourbillons : chaleur et vibrations
- → Régime peu efficace

PARTICULARITÉS LIÉES AU SANG

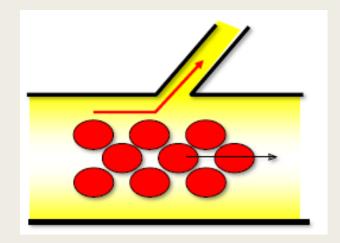


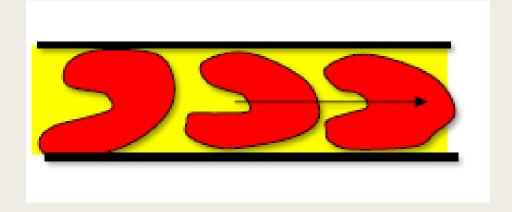

- Le sang est une suspension de cellules (les GR) baignant dans une solution macromoléculaire : le plasma.
- Plasma: sérum + éléments coagulants. →Fluide Newtonien.
- <u>Sérum</u>: plasma éléments coagulants (présents dans le caillot)
- Les cellules sanguines (GR) font que le **sang** se comporte comme un fluide non Newtonien


Rhéologie: étude des déformations de la matière en écoulement


La viscosité du sang est due aux <u>interactions intercellulaires</u>, conférant au sang son caractère de <u>fluide non Newtonien</u> dont la viscosité η varie avec <u>dv/dx</u> (taux de cisaillement).

η diminue quand dv/dx augmente : c'est le phénomène de rhéofluidification +++


→La viscosité augmente avec l'hématocrite


Artérioles

- circulation axiale des globules rouges → phénomène «<u>d'écrémage</u>» au niveau des vaisseaux latéraux:
 - →diminution locale de l'hématocrite

Capillaires <8µm

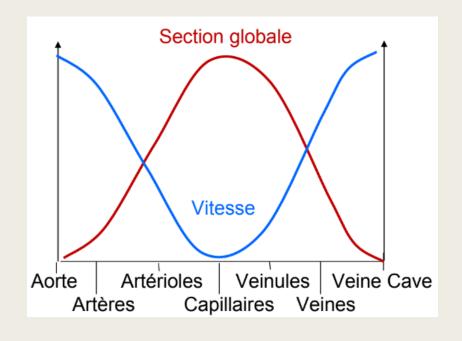
déformation des GR : c'est la viscosité intra-cellulaire qui intervient

PARTICULARITÉS LIÉES À L'ANATOMIE

Volume de sang chez l'adulte $\approx 5L$

2 circulations

3 secteurs


	% vol total¹	
Systémique	13 (98)	70
Pulmonaire	2,6 (20)	20

Volume	%	mL
 Artériel 	10	<i>500</i>
 Capillaire 	5	<i>250</i>
Veineux	<i>55</i>	<i>2750</i>

NOTION DE SECTION INDIVIDUELLE ET GLOBALE

Le système étant fermé, et le débit constant, la vitesse varie selon la section (globale)

	Diamètre d [cm]	Section individuelle $s_{i} = \pi d^2/4$ [cm ²]	Nombre n	Section globale S = n x s _i [cm ²]
Aorte	1	0,8	1	0,8
Artères	0,1	0,007854	600	4,7
Artérioles	0,002	0,000003	40000000	125,7
Capillaires	0,0008	0,000001	1200000000	603,2
Veinules	0,003	0,000007	80000000	565,5
Veines	0,24	0,045239	600	27,1
Veine cave	1,25	1,2	1	1,2

La vitesse minimale au niveau des capillaires permet de maximiser les échanges