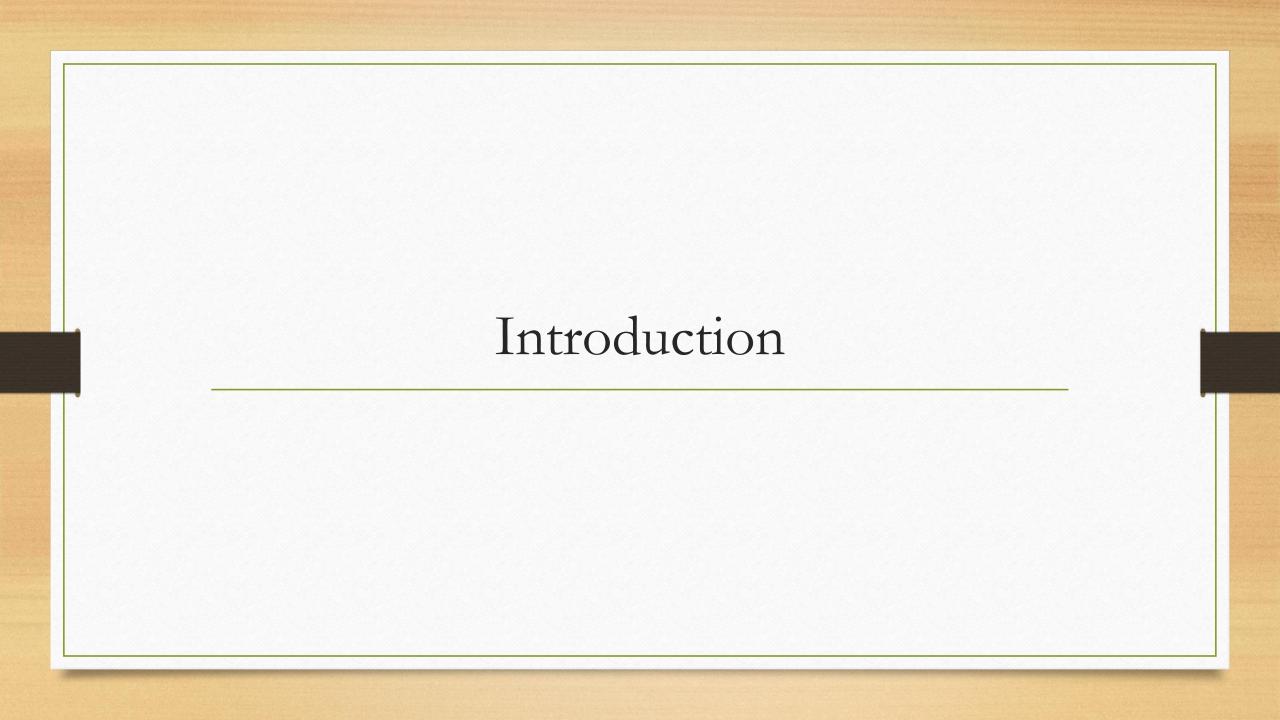


RÉACTIONS ACIDO-BASIQUES

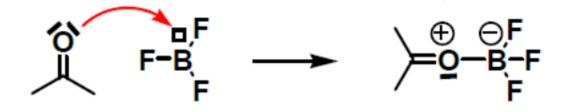
Chimie Organique, cours 3

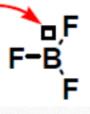
Tutorat Niçois


2017-2018

Plan

• Intro- Les définitions de l'acido-basicité


- I- pH et pKa
- II- Force d'un acide et d'une base
- III- Réactions acido-basiques
- IV- Ambivalence base/nucléophile
- V- Exercices d'application



Intro

- 2 types d'acidité:
 - Selon Lewis: réaction acido-basique = échange d'électrons entre molécules
 - Acide = espèce avec une case vacante
 - Base = espèce avec un DNL

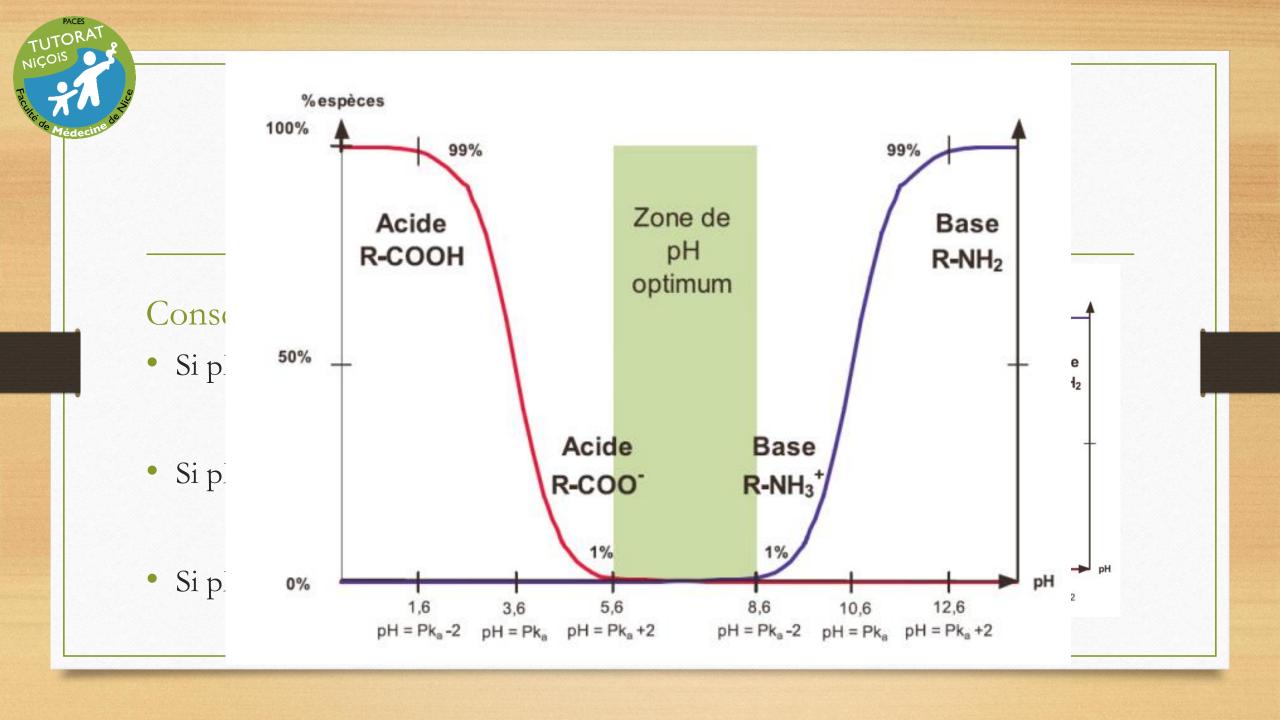
Cette réaction aboutit à la création d'une liaison de coordinance (case vacante + DNL)

Intro

- 2 types d'acidité:
 - Selon Brönsted: réaction acido-basique = échange de protons (H⁺) entre molécules
 - Acide = espèce capable de céder un proton
 - Base = espèce capable d'accepter un proton

$$AH \leftrightarrows A^{-} + H^{+}$$

 $B \mid + H^{+} \leftrightarrows BH$

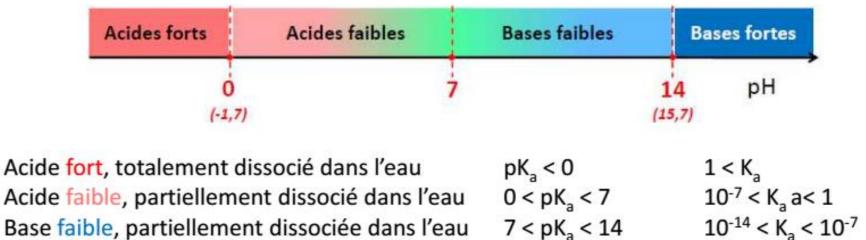

$$AH + B \rightleftharpoons A^- + BH^+$$

II- pH et pKa

I- pH et pKa

- Pour caractériser l'équilibre de la réaction, on utilise Ka (cste d'acidité)
 - $K_a = \frac{[A^-][H_3O^+]}{[AH]}$ et pKa = log Ka
- Pour caractériser l'acidité de la solution, on utilise le pH (potentiel H)
 - $pH = -log[H_3O^+]$
- En remplaçant, on trouve $pH = pK_a + log \frac{[A]}{[AH]}$
- LE pKa EST ÉGAL AU pH A LA DEMIE ÉQUIVALANCE +++

II- Force d'un acide/base



II- Force d'un acide/base

• Dans l'eau, 0 < pH < 14

Base forte, totalement dissociée dans l'eau

• Appréciée avec le pKa, une espèce acido-basique est dite forte ou faible

 $pK_a > 14$

 $K_a < 10^{-14}$

Table de pKa des espèces organiques

A/	Force
/	

- On l'appr
 - Plus pl
 - Plus pl
- Pour cara celle-ci e
 - Regard

Acides inorga	p <i>Ka</i>	Acides Orga	рКа	
H-I	-9	CH₃SO₃H	0	
H-Br	-8	CF ₃ CO ₂ H	0,2	
H-Cl	-7	HCO ₂ H	3,8	
H-HSO ₄	-3 0 cm	C ₆ H ₅ CO ₂ H	4,2	
H-NO ₃	-1,5	CH ₃ CO ₂ H	4,8	
H-SO ₄	2 (4 ²)	(CH ₃ CO) ₂ CH-H	4,8 9	
H-H ₂ PO ₄	"	CHON	10	
H-F	Valeur a retenir:	H	10,2	
H-HCO ₃	pKa des acides carb	oniques	10,6	
H-HS	COOH : 4-5		15,9	
H-CN	9,2	CH₃COCH₂-H	20	uée. Plus
H-NH ₃ +	9,2	HC≡C-H	26	
н-он	15,7	C ₆ H ₅ CH ₂ -H	41	
H-NH ₂	33	CH ₃ CH ₂ CH ₂ CH ₂ -H	50	

II- Force des acides et des bases

B/ Force d'une base

- On l'apprécie grâce au pKa: plus le pKa est fort, plus la base est forte (et inversement) => contraire des acides
- Pour caractériser la force d'une base, on va regarder son enrichissement en électrons. Plus elle est enrichie en électron, plus elle est forte ++++
 - Regarder les effets électroniques ++

Valeur à retenir: pKa amine pKa $(NH_3/NH_4^+) = 9$

III- Réactions acido-basiques

III- Réactions acido-basiques

• Il faut un acide et une base

$$AH \leftrightarrows A^- + H^+$$

• Il faut que **pKa** acide < **pKa** base

$$AH + B \rightleftharpoons A^- + BH^+$$

- La réaction est quasi-totale si $\Delta pKa > 3$ (fortement déplacée vers la droite)
- Les réactions acido-basiques sont toutes réversibles => <u>contrôle</u> <u>thermodynamique</u> (pas de contrôle cinétique)

Les espèces riches en électrons peuvent être des bases et des acides => compétition ++

Basicité

- Dépend de la **stabilité** des espèces (pKa et équilibre acido-basique)
- Paramètres
 THERMODYNAMIQUES ++

Nucléophilie

- Dépend de la disponibilité des doublets électroniques (ne dépend que de la structure électronique)
- Paramètres CINÉTIQUES++

- Pour déterminer le caractère dominant => étude stérique et électronique
- Plus la molécule est encombrée(\(\neq\) petite), plus elle est basique(\(\neq\) nucléophile)
- L'électronégativité a tendance à augmenter la charge électronique en baissant sa disponibilité, rendant la molécule moins nucléophile et plus basique
- Inversement, la taille de l'atome augmente la nucléophilie en diminuant la basicité

 Rappel:

Rappel:
Electronégativité vers haut droite du
TPE
Nucléophilie vers bas et gauche du TPE

- Attention : certaines espèces chimiques sont à la fois très nucléophiles et très basiques : pièges ++
 - Alcoolates peu encombrés (ex : MeONa, EtONa…)
- D'autres espèces sont uniquement basiques (éliminations ++)
 - Bases très encombrées (ex : LDA, tBuOK…)
- D'autres sont quasi exclusivement nucléophiles
 - Ex $N \equiv C^-$ (base faible, pKa = 9; nucléophile très fort)...

C'est bien de s'entraîner ++

• QCM 1: A propos de l'acido-basique, donnez les vraies:

- A) Selon Brönsted, une réaction acido-basique aboutie a une liaison par coordinance
- B) Selon Lewis, une réaction acido-basique correspond à un transfert de proton
- C) Un acide de Lewis possède obligatoirement une case vacante
- D) Dans une solution aqueuse, le pH est limité entre 0 et 14 compris
- E) Toutes les propositions sont fausses

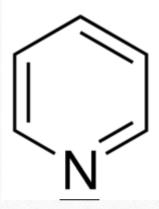
• QCM 1: A propos de l'acido-basique, donnez les vraies:

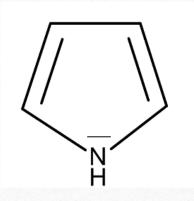
- A) Selon Brönsted, une réaction acido-basique aboutie a une liaison par coordinance
- B) Selon Lewis, une réaction acido-basique correspond à un transfert de proton
- C) Un acide de Lewis possède obligatoirement une case vacante
- D) Dans une solution aqueuse, le pH est limité entre 0 et 14 compris
- E) Toutes les propositions sont fausses

• QCM 2 : Classez ces molécules par ordre d'acidité décroissante:

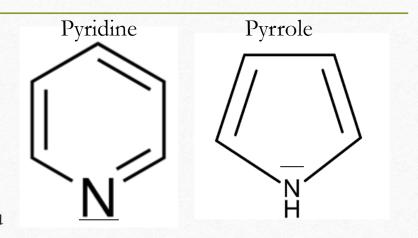
E) A, B, C et D sont fausses

Note: électronégativité


D'après annatut' d'orga 2014-2015


- Correction : <u>**Réponse C**</u>
- Il faut travailler sur les bases conjuguées. Plus celles-ci sont stables (=faibles), plus l'acide associé est fort.
- Aucune mésomérie: pas de problème de ce côté là ©
- Ici, les groupements halogènes stabilisent les bases conjuguées grâce à leur forte électronégativité.
 - La mol d) n'en a pas, la base n'est pas stable, l'acide est faible
 - Les mol b) et c) ont un halogène en α (assez loin), leur différence de stabilité s'explique par l'électronégativité différente entre les halogènes (F > Cl)
 - Les mol a) et e) on un halogène sur le carbonyle, leur différence de stabilité s'explique par l'électronégativité différente entre les halogènes (Cl > Br)

• Quelle est la base la plus forte?


Pyridine

Pyrrole

- <u>La base la plus forte est celle avec la densité</u> électronique la plus élevée.
- Ici, on a deux effets inductifs attracteurs pour les 2 molécules (N très électronégatif), on ne peut pas les départager avec ça.
- Le DNL du pyrrole est sur une orbitale p pure, il est délocalisable et délocalisé car pris dans la mésomérie du cycle, on enlève des électrons à l'azote
- Le DNL de la pyridine est lui sur une orbitale hybride sp2 et donc PAS DÉLOCALISABLE. Il reste en place et renforce électroniquement l'azote.

Pyridine > Pyrrole

• QCM 3 : A propos de la réaction suivante, donnez les vraies :

$$H_3C$$
OH + NH_3
 \longrightarrow
 H_3C
OF + NH_4^{\dagger}

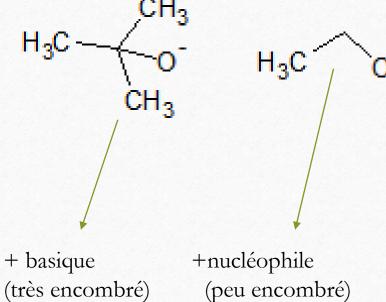
- A) Dans cette réaction acido-basique, l'acide est l'acide propanoique
- B) Cette réaction est quasiment totale
- C) Cette réaction est sous contrôle cinétique
- D) La définition acido-basique utilisée ici est celle de Brönsted
- E) Toutes les autres propositions sont fausses

• QCM 3 : A propos de la réaction suivante, donnez les vraies :

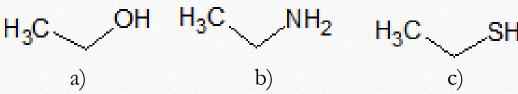
$$H_3C$$
OH + NH_3
 \longrightarrow
 H_3C
OF + NH_4^{\dagger}

- A) Dans cette réaction acido-basique, l'acide est l'acide propanoique
- B) Cette réaction est quasiment totale
- C) Cette réaction est sous contrôle cinétique
- D) La définition acido-basique utilisée ici est celle de Brönsted
- E) Toutes les autres propositions sont fausses

• Ambivalence nucléophilie/basicité: quel est le caractère dominant?


$$H_3C$$
 O
 O
 H_3C
 O
 E_1
 CH_3

Encombrement stérique ? Taille ? Électronégativité ?


$$H_3C$$
 OH H_3C NH_2 H_3C SH

• Ambivalence nucléophilie/basicité: quel est le caractère dominant?

Encombrement stérique ? Taille ? Électronégativité ?

Nucléophilie: C>B>A (selon taille de l'atome)

Basicité : A>B>C (selon élecetronégativité de l'atome)

ENFIN LA FIN!!

§ Merci de votre attention §

