
Identification d'une Molécule à Visée Thérapeutique

<u>Cycle de vie</u> = histoire du mdc ds le **temps** depuis découverte/conception jusqu'à arrêt de sa commercialisation. (\approx 25 ans)

- 1) Recherche de molécules actives (≈ 3 ans)
- 2) **Brevet** = protéger découverte (valable 20 ans)
- 3) Recherche préclinique (in vitro, animaux)
- 4) Dev Clinique
- 5) AMM (molécule devient mdc) : étape essentielle
- 6) Commercialisation (15-20 ans)
- 7) Retrait (rapport bénéfice risque défavorable, génériques moins chers, mdcs + performants, lié à l'évolution des industries pharmaceutiques)

On part de **10 000 molécules** (parfois 30 000), bcp de déchets et de perte de temps en cherchant la ou les **bonnes molécules**. Le médicament coûte cher pour **amortir la recherche** en amont.

Développement = **juste milieu** entre besoin de santé publique et comptabilité éco ⇒ guider l'histoire. Molécules développées selon les besoins de **santé pub** qui **croisent** les **espoirs de vente** :

- Notion de Progrès thérapeutique = nouveaux médicaments pour meilleur rapport bénéfice risque
- Notion de Rentabilité économique pour l'entreprise pharmaceutique (industriels)

 \underline{Ex} : nvx M contre Hépatite C (pourrait être éradiquée) = progrès thérapeutique important mais coût de ces M ++ élevés (Ribavirine, Sofusbivir)

Exception pour les maladies très rares qui touchent quelques centaines de personnes : pouvoirs publics injectent de l'argent pour développer des mdcs qui ne seront pas rentables.

I/ IDENTIFICATION DE LA CIBLE PERTINENTE :

A) Avant-Projet:

1) Marché potentiel:

- ⇒ Dans quel domaine va-t-on développer un mdc ? marché potentiel ?
- ⇒ Y'a-t-il déjà des **molécules efficaces** dans la pathologie considérée ?
- ⇒ Quelle place reste-t-il pour un new mdc?

Ex: Diabète = reste un marché potentiel car population importante, ++ si découverte nv mécanisme d'action

2) Moyens techniques à mettre en œuvre :

- ⇒ Est-ce qu'on a l'équipement nécessaire ?
- ⇒ A-t-on les moyens techniques et technologiques ? Les outils ? Les modèles expérimentaux ?

3) Connaissances/Compétences scientifiques requises :

- ⇒ Quels acteurs? Quelle expertise? Quelle formation? Réglementation?
- ⇒ Collaborations : hôpitaux pour les prélèvements de tumeurs
- ⇒ De + en + de collaborations avec Université/Recherche (recherche d'amont) ⇒ dev mdc (industriel)

Ex : Cancer = besoin collaboration pour décrypter le génome

B) Projet:

Recherche de la molécule active (PA) ⇒ études **précliniques** ⇒ études **cliniques** sur l'Homme ⇒ **commercialisation**

🍑 Pas la peine d'investir dans la recherche si on pas la perspective d'aller plus loin. A chaque étape « Go-Nogo »

II/ IDENTIFICATION DE MOLECULES ACTIVES SUR LA CIBLE :

A) Différentes origines possibles :

Extraction végétale : Ex :

Paclitaxel $(Taxol^{\circ})$ = anticancéreux.

Extrait de l'écorce d'**If du Pacifique** ⇒ problèmes écologiques (abattre des arbres)

⇒ la société s'engageait à en planter un de remplacement à chaque fois. Finalement le CNRS ont découvert le **Docétaxel** (Taxoter®) = extrait des feuilles d'If européen ⇒ puis synthèse chimique = anticancéreux

De nos jours on cherche encore : arbres, plantes, algues (on trouve des molécules et on améliore par chimie)

Morphine = extraite du pavot

Digitaline = tonicardiaque, extraite de la digitale

- Extraction minérale : hydroxyde d'aluminium, Smecta® à base d'argile.
- <u>Extraction animale</u>: <u>immunoglobulines</u> (vaccin), de moins en moins, <u>insuline</u> (avant, mnt produite pas biotechnologies)
- Extraction humaine : dérivés sanguins (albumine)
- Synthèse chimique : la plupart des médicaments (ex : bétabloquants).
- <u>Biotechnologies/Biothérapies</u>: en pleine expansion ⇒ modif génome de € pour qu'elles produisent une protéine en grande quantité (ex : les Erythropoïétines ou Ac anti EGFR utilisés en cancérologie)
 Fait appel à des technologies complémentaires (Immunologie, BioMol) = très <u>coûteux</u> mais ça vaut le coup

B) Modalités de découvertes :

1) Découvertes dues au hasard ou à des données empiriques :

Curiosité +++ = observation de l'effet biologique d'une substance naturelle ou synthétique

 <u>Effet biologique d'une substance</u>: Ethnopharmacologie: à partir de la médecine des peuples indigènes d'Afrique, Asie. Observer leur médecine

 ⇒ extractions
 ⇒ PA intéressants.

<u>Ex :</u> **Glucosides cardiotoniques** (extraits de la digitale), **Taxanes = paclitaxel + docétaxel** (extraits des Ifs, utilisés en cancéro), **Théophyline** (extrait du thé, stimulant cardiaque + bronchodilatateur)

- o <u>Effets Indésirables</u> = assez fréquent
- Sildénafil: ((13) étude ds l'angor (vasodilatateur coronarien) ms peu de résultats satisfaisants, EI = effet pro érectile → Viagra® (potentialisation effet du NO (augmente le GMPc) → relaxation du ML → améliore la vasodilatation des vsx pulmonaires et la capacité d'effort dans l'HTAP: *Révatio®*)
- Sulfamides hypoglycémiant : Au départ sulfamides antibactériens qui déclenchaient des hypoglycémies sévères mtnt ils sont à la base des antidiabétiques
- o Toxicité:
- **Trinitrine**: découverte de la nitroglycérine (solution huileuse explosive) = Dynamite (A. Nobel) Un chimiste s'est mis de la nitroglycérine sur la langue et ça a donné mal tête ⇒ découverte des effets vasodilatateurs de la nitroglycérine (tjrs utilisé dans les crises d'angor en sublingual) + autres dérivés nitrés : NO (utilisé comme vasodilatateur d'urgence en réa)
- Anti Vitamine-K : Anticoagulants pour limiter le risque de thrombose (PA = dicoumarol), découvert chez les vaches qui mangeaient le mélilot (herbe) et qui mourraient d'hémorragie.

RMQ : Parfois, on réétudie des molécules/médicaments déjà connus pour voir si on a pas zappé certaines de leurs propriétés = pour autres maladies, autres doses... = repositionnement de médicaments.

2) Découverte par hasard :

Ex: Pénicilline (voir cours 1 ©)

Acétate de glatiramère : utilisée dans la sclérose en plaque (SEP) = maladie inflammatoire contre la gaine de myéline des axones du SNC. Dev d'un modèle d'étude animal → synthèse d'un peptide ressemblant à la myéline

3) A partir de la connaissance d'un processus physiopathologique ou d'une cible moléculaire = plus fréquent :

Trouver des molécules **chimiques** capables d'interagir avec un **système physio-pathologique** connu (**criblage** ou **screening** primaire) :

- o <u>Processus physiologique</u>: **SRA dans HTA**: découverte enz de conversion → recherche d'inhibiteurs (= IEC captopril, enalapril)
- o <u>Cible = enzyme</u>: **HMG-coA reductase**: impliquée dans synthèse cholestérol → statines (découvertes par criblage)
- = hypocholestérolémiants
- o <u>Cible = gène ou protéine surexprimé</u>: Thérapies ciblées en cancéro → **EGFR**_= Rc d'un facteur de croissance, surexprimé dans cellules cancéreuses = accélère la prolifération :

 - Processus suractivé dans le cancer (ex : cancer colorectal métastatique)
 ⇒ on va chercher à bloquer le Rc par des anticorps (*Cetuximab* = Biothérapies) ou empêcher la phosphorylation par molécule chimique par inhibition de l'activation du Rc (*Gefitinib* : utilisé dans le cancer colorectal métastatique)

4) Découverte par modélisation moléculaire

Connaitre la structure de la cible en 3D (critère géométriques et électrochimiques pour prédire les coposés actifs) Par approche informatique = méthode **in sillico**

Moins couteux que l'expérimentation au labo, ++ utilisé (temps et moyens) dans dev de synthèse

Concept clef-serrure et relation structure- activité (RSA) à partir d'un squelette d'une molécule connue

Identification de grp chimiques permettant la liaison des molécules à la cible

Identification de la cible moléculaire par décryptage du génome et nouvelles technologies (-omiques) : études de gènes liés aux maladies et identification des protéines correspondantes (++ cancéro)

Il est plus facile d'inhiber que d'induire car il suffit de bloquer des étapes pour inhiber.

5) Découvertes à partir de molécules déjà connues « me-too » :

On recherche les PA d'une même famille à partir d'un médicament déjà commercialisé, objectif :

- ➤ <u>Améliorer le mdc original</u> = découvertes mineures participant aux progrès et améliorent le confort = <u>Me-Too</u>
 - meilleure pharmacocinétique : trouver une forme prenable par voie orale, diminution du nb de prise par un effet retard pour une meilleure observance...)
 - améliorer sur le plan pharmacothérapeutique : améliorer la balance bénéfice/risque, (+ efficacité et d'effets indésirables) ex : enalapril plus spécifique que captopril (moins d'El)
- ➤ des coûts(car pas de 1ère étape)

 → modèles pharmaco et toxicologiques déjà connus, RSA
- **Limites**:
- Intérêt réel à la santé publique ? ⇒ apporte un + mais rien de révolutionnaire.
- Obligation de **démontrer** qu'on est aussi bien que l'ancien mdc ou mieux « pas moins efficace que »

Ex: β bloquant: Propanolol (le premier avec le plus de propriétés) \rightarrow Pindolol (propriétés plus restreintes aux effets cardio-vasculaires)

RMQ : Le générique correspond au même médicament (même PA) \neq « me-too » qui sont des nouvelles molécules On connaît cible, la mol tête de file \Rightarrow trouver les **molécules les + adaptées** à un dev ultérieur = Screening.

III/ SCREENING = CRIBLAGE:

Screening haut débit (grosses machines)/criblage, 2 étapes ⇒ sélectionner une molécule au profil idéal.

NDLR: C'est un peu comme un casting.

A) Screening Primaire:

On part de 10 000 à 50 000 molécules à la fin il en reste 100. 1er filtre

<u>But</u> = trouver l'activité principale sur la cible, identifier des **touches** puis **têtes de séries** ⇒ avoir un début de structure de la molécule active, informer rapidement les chimistes pour orienter de nouvelles synthèses, éliminer les substances pas assez actives ou délétères

1ers tests pharmacologiques = automatisme 24h/24 (achat des molécules aux entreprises ayant des banques)

- o tests les + simples et rapides possibles
- o reproductible
- o peu couteux

Ex : criblage HD sur culture de cellules tumorales

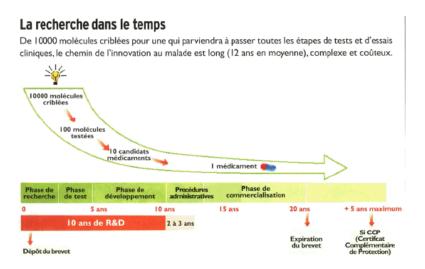
B) Screening Secondaire:

100 molécules intéressantes (*têtes de série*) ⇒ screening secondaire :

- o + pointu, + élaboré, + performant, + cher
- Modèles + sophistiqués =
- cellules
- tissus/organes isolés in vitro : contraction d'un vaisseau sanguin
- modèle animal in vivo : modèle in vivo du chien anesthésié pour l'hémodynamique, modèle génétique de rats hypertendus spontanément, modèle physiopatho du rat hypertendu par ligature de l'artère rénale

RMQ : Il faut forcément des tests sur des mammifères supérieurs car but final = santé humaine (législation ++).

A la fin il nous reste une dizaine de molécules encore en course, les candidats médicaments.


C) Sélection du candidat médicament (<10 molécules) :

Il nous reste moins de 10 molécules, qui iront à **l'étape suivante** (essais précliniques, cliniques puis mise sur le marché) à partir du screening secondaire et de quelques tests complémentaires

Possibilité d'obtenir des molécules plus intéressantes en développant la synthèse chimique

A chaque étape, si la molécule concernée est trop dangereuse/ne convient pas, on abandonne et on aura fait tout ça pour rien.

THE BILAN:

