

UE3A - PHYSIQUE

BASES GÉNÉRALES DE PHYSIQUE

1

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

Le tutorat est gratuit. Toute copie ou vente est interdite.

I) LA MÉCANIQUE CLASSIQUE

1.	GÉNÉRALITÉ
2.	CINÉMATIQUE
3.	DYNAMIQUE
4.	CONDITIONS D'ÉQUILIBRE D'UN SOLIDE
	II) L'ÉLECTROSTATIQUE
1.	FORCE ÉLECTROSTATIQUE
2.	NOTION DE CHAMP ÉLECTRIQUE
3.	EXEMPLES ÉLÉMENTAIRES
	III) LE FORMALISME DU POTENTIEL
1.	TRAVAIL D'UNE FORCE
2.	NOTION D'ÉNERGIE POTENTIELLE
3.	ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
4.	RELATION FORCE-ÉNERGIE PONCTUELLE
5.	ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE
	IV) LES DIPÔLES ÉLECTRIQUES
1.	DÉFINITION

3

4. CONDENSATEUR

2.

DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE

DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE

LA MÉCANIQUE CLASSIQUE ÉTUDIE LES MOUVEMENTS D'UN SYSTÈME

Elle a pour but de:

- COMPRENDRE LES MOUVEMENTS DU SYSTÈME
- PRÉDIRE LES MOUVEMENTS DU SYSTÈME

Pour cette étude, il faut un référentiel

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

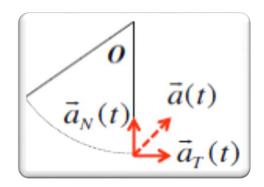
III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

Le tutorat est gratuit. Toute copie ou vente est interdite.

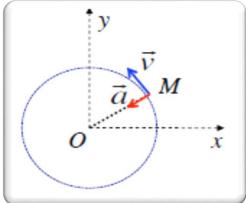

LA CINÉMATIQUE : ÉTUDE DES SYSTÈMES EN MOUVEMENT, SANS PRENDRE EN COMPTE LES FORCES EXTÉRIEURES

Elle s'intéresse à trois choses :

- I A TRA IFCTOIRE
- LA VITESSE
- L'ACCÉLÉRATION

L'accélération possède deux composantes :

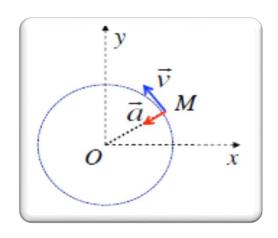
- UNE COMPOSANTE TANGENTIELLE
- UNE COMPOSANTE NORMALE


Rappel:

- L'ACCÉLÉRATION EST LA DÉRIVÉ PAR RAPPORT AU TEMPS DE LA VITESSE
- LA VITESSE EST LA DÉRIVÉ PAR RAPPORT AU TEMPS DE LA POSITION

ÉTUDE DE CAS : LE MOUVEMENT CIRCULAIRE UNIFORME

Le mouvement circulaire uniforme se caractérise par :


- UNE TRAJECTOIRE CIRCULAIRE
- UNE VITESSE CONSTANTE
- UNE ACCÉLÉRATION TANGENTIELLE NULLE

Dans ce type de mouvement, on parle de <u>vitesse angulaire</u>, notée ω : ω =

Pour l'accélération :

- UNIQUEMENT UNE COMPOSANTE NORMALE
- DIRIGÉE VERS LE CENTRE DU CERCLE : ACCÉLÉRATION CENTRIPÈTE

L'accélération peut s'exprimer en fonction de la vitesse angulaire : $a_n = \omega^2 r = \frac{v^2}{r}$

$$a_n = \omega^2 r = \frac{v^2}{r}$$

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- 3. DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- 1. FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

Le tutorat est gratuit. Toute copie ou vente est interdite.

LA DYNAMIQUE : ÉTUDE DES SYSTÈMES EN MOUVEMENT, EN TENANT COMPTE DES FORCES EXTÉRIEURES

Trois lois de bases de la dynamique, qui sont les lois de Newton :

- 1) LE PRINCIPE D'INERTIE
- 2) LE PRINCIPE FONDAMENTAL DE LA DYNAMIQUE
- 3) LE PRINCIPE D'ACTION RÉACTION

LA PREMIÈRE LOI, OU PRINCIPE D'INERTIE

Dans un référentiel galiléen, l'accélération est nulle si et seulement si la somme des forces extérieures est nulle :

$$\overrightarrow{a} = 0 \Leftrightarrow \sum \overrightarrow{F}_{ext} = 0$$

Référentiel galiléen : la première loi de Newton s'applique

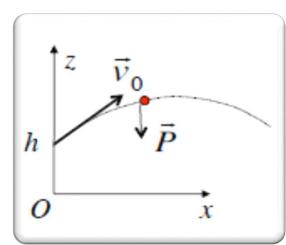
LA DEUXIÈME LOI, OU PRINCIPE FONDAMENTALE DE LA DYNAMIQUE

Dans un référentiel galiléen, la somme des forces extérieures est égale au produit entre la masse de l'objet et son accélération :

$$m\overrightarrow{a} = \sum \overrightarrow{F}_{ext}$$

LA TROISIÈME LOI, OU PRINCIPE D'ACTION RÉACTION

Tout corps A exerçant une force sur un corps B subit une force opposée, d'intensité égale exercée par le corps B :

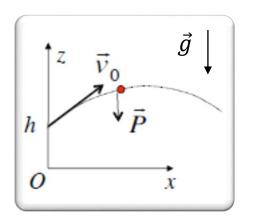

$$\overrightarrow{F}_{A/B} = -\overrightarrow{F}_{B/A}$$

EXEMPLE: TIR BALISTIQUE

Tir balistique d'un objet avec :

- UNE VITESSE INITIALE
- UN ANGLE θ

Deuxième loi de Newton!


Une seule force : le poids

$$\sum \overrightarrow{F}_{ext} = \overrightarrow{P} = m \cdot \overrightarrow{g}$$

$$m \overrightarrow{a} = m \overrightarrow{g} \quad \overrightarrow{a} = \overrightarrow{g}$$

$$a_{t} \begin{vmatrix} a_{x} = 0 \\ a_{y} = 0 \\ a_{z} = -g \end{vmatrix}$$

$$h$$

En intégrant l'accélération puis

la vitesse:

$$\begin{vmatrix} v_{t} & v_{t} = v_{0x} \\ v_{t} & v_{y} = 0 \\ v_{z} = -gt + v_{0z} \end{vmatrix} \Rightarrow \begin{cases} x_{t} = v_{0x}t \\ y_{t} = 0 \\ z_{t} = -\frac{1}{2}gt^{2} + v_{0z}t + h \end{cases}$$

Pour avoir une idée globale de la trajectoire, on élimine la variable t :

$$\begin{cases} t = \frac{x}{v_{0x}} \\ z = -g \cdot \frac{x^2}{2v_{0x}^2} + \frac{v_{0z}}{v_{0x}} x + h \end{cases}$$

En exprimant en fonction de la vitesse initiale et de l'angle du tir :

$$v_{0z} = v_0.sin(\Theta)$$

$$v_{0x} = v_0.cos(\Theta)$$

$$z = -g.\frac{x^2}{2v_{0^2}cos^2(\Theta)} + \frac{sin(\Theta)}{cos(\Theta)}.x + h$$

Pour z et h pris comme nuls, on a alors:

$$0 = -g.\frac{x^2}{2v_0^2cos^2(\Theta)} + \frac{sin(\Theta)}{cos(\Theta)}.x \qquad \qquad x = \frac{2.v_0^2sin(\Theta)cos^2(\Theta)}{cos(\Theta).g}$$

$$x = \frac{v_0^2 sin(2\Theta)}{g}$$

Equation importante!

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

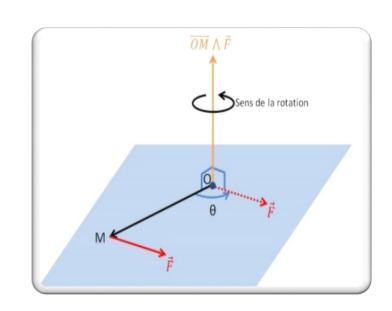
Le tutorat est gratuit. Toute copie ou vente est interdite.

UN OBJET EST EN ÉQUILIBRE LORSQUE TOUS SES POINTS SONT AU REPOS

Pour cela, deux conditions:

- BILAN DES FORCES EXTÉRIEURES EST NUL, ÉQUILIBRE DE TRANSLATION
- MOMENT DES FORCES EST NUL, ÉQUILIBRE DE ROTATION

MOMENT D'UNE FORCE

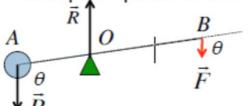

Le moment d'une force F appliquée au point M par rapport au point O est donné par le produit vectoriel : $\overrightarrow{OM} \wedge \overrightarrow{F}$

Le vecteur issu de ce produit :

- SA DIRECTION EST PERPENDICULAIRE AU PLAN (OMF)
- SON SENS EST DONNÉ PAR LA RÈGLE DU VISSAGE DROIT
- SA NORME VAUT : $\|OM\| \cdot \|F\| \sin(\Theta)$

RÈGLE DU VISSAGE DROIT

- 1. PROJETER LE VECTEUR F, POUR QUE LES
 DEUX VECTEURS AIENT LA MÊME ORIGINE
- 2. PLACER LA MAIN DANS LA DIRECTION OM
- 3. TOURNER JUSQU'AU VECTEUR F, EN PRENANT LE CHEMIN LE PLUS COURT



Il y a 2 possibilités:

- SENS HORAIRE, RENTRE DANS LA FEUILLE : SIGNE POSITIF
- SENS ANTI-HORAIRE, SORT DE LA FEUILLE : SIGNE NÉGATIF

EXEMPLE: LE LEVIER

Exemple: quelle force F appliquer au point B pour obtenir l'équilibre du levier ?

$$\vec{P} + \vec{R} + \vec{F} = 0$$

$$\vec{P} + \vec{R} + \vec{F} = 0$$

$$\vec{O} \mathbf{A} \wedge \vec{P} + \mathbf{O} \mathbf{B} \wedge \vec{F} = 0$$

$$-OA.P \sin \theta + OB.F \sin \theta = 0 \Rightarrow F = P \frac{OA}{OB}$$

Pour l'équilibre, les deux conditions doivent être remplies

QCM 1 : A PROPOS DE LA MÉCANIQUE CLASSIQUE

- A. La cinématique prend en compte les forces extérieures
- B. La deuxième loi de newton définit ce qu'est un référentiel galiléen
- C. La vitesse possède deux composantes : une tangentielle et une normale
- D. Dans un mouvement circulaire uniforme, l'accélération centrifuge est dirigée vers le centre du cercle
- E. Les réponses A,B,C et D sont fausses

QCM 1 : A PROPOS DE LA MÉCANIQUE CLASSIQUE

- A. La cinématique prend en compte les forces extérieures
- B. La deuxième loi de newton définit ce qu'est un référentiel galiléen
- C. La vitesse possède deux composantes : une tangentielle et une normale
- D. Dans un mouvement circulaire uniforme, l'accélération centrifuge est dirigée vers le centre du cercle
- E. Les réponses A,B,C et D sont fausses

QCM 2 : A PROPOS DES CONDITIONS D'ÉQUILIBRE

- A. Le moment des forces d'un objet tournant sur lui-même est non nul
- B. Un système en équilibre est stable
- C. Un système stable est en équilibre
- D. Un système dont le bilan des forces et le moment des forces est nul, est forcément en équilibre statique
- E. Les réponses A,B,C et D sont fausses

QCM 2 : A PROPOS DES CONDITIONS D'ÉQUILIBRE

- A. Le moment des forces d'un objet tournant sur lui-même est non nul
- B. Un système en équilibre est stable
- C. Un système stable est en équilibre
- D. Un système dont le bilan des forces et le moment des forces est nul, est forcément en équilibre statique
- E. Les réponses A,B,C et D sont fausses

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- 3. DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- 1. FORCE ÉLECTROSTATIQUE
- NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

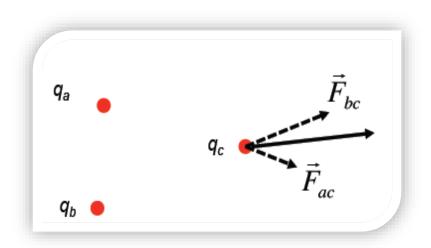
- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

Le tutorat est gratuit. Toute copie ou vente est interdite.

ELECTROSTATIQUE : ÉTUDES DES CHARGES ÉLECTRIQUES AU REPOS


$$\overrightarrow{F}_{a/b} = k \frac{q_a \cdot q_b}{r^2} \cdot \widehat{r}$$

Deux types de forces :

- ATTRACTIVE, POUR DES CHARGES DE SIGNES OPPOSÉS
- RÉPULSIVE, POUR DES CHARGES DE MÊME SIGNES

PROPRIÉTÉ IMPORTANTE : LA FORCE ÉLECTROSTATIQUE EST ADDITIVE

Comment calculer la force exercée sur q_c?

$$\overrightarrow{F} = \overrightarrow{F}_{a/c} + \overrightarrow{F}_{b/c}$$

$$\overrightarrow{F} = k.\frac{q_a.q_c}{r^2}.\widehat{r} + k.\frac{q_b.q_c}{r^2}.\widehat{r}$$

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- 3. DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

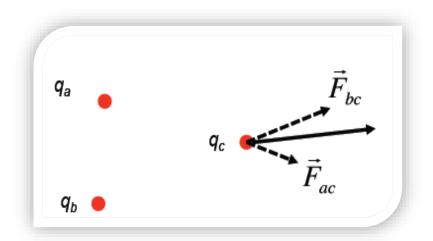
- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR


Le tutorat est gratuit. Toute copie ou vente est interdite.

CHAMP ÉLECTRIQUE : CHAMP DE FORCE CRÉÉ PAR L'INTERACTION DE PLUSIEURS CHARGES ÉLECTRIQUES

Le champ électrique au point (x,y,z) est la force électrique qui s'exercerait sur une charge unité placée en ce point

$$\overrightarrow{F} = q. \overrightarrow{E}(x, y, z) \qquad \overrightarrow{E} = \sum_{i} k. \frac{q_i}{r_i^2} . \widehat{r}_i$$

EXEMPLE : CHARGE DANS UN CHAMP ÉLECTRIQUE

$$\overrightarrow{E} = k.\frac{q_a}{r_{ac}^2}.\widehat{r}_{ac} + k.\frac{q_b}{r_{bc}^2}.\widehat{r}_{bc}$$

$$\overrightarrow{F} = q_c \overrightarrow{E}$$
 $\overrightarrow{F} = k.\frac{q_a.q_c}{r^2}.\widehat{r} + k.\frac{q_b.q_c}{r^2}.\widehat{r}$

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

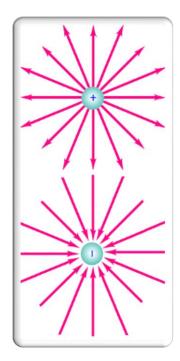
- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

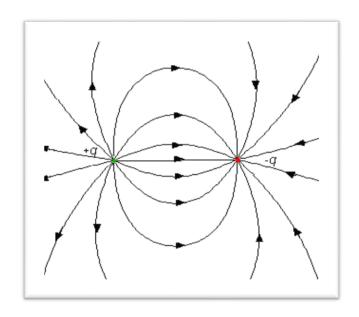
- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR


Le tutorat est gratuit. Toute copie ou vente est interdite.

CHARGES PONCTUELLES

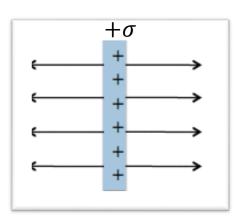
On distingue deux types de charges :

• LES CHARGES <u>POSITIVES</u> : LES LIGNES DE CHAMPS SONT RADIALES ET DIRIGÉES VERS <u>L'EXTÉRIEUR</u> (RÉPULSIF)


• LES CHARGES <u>NÉGATIVES</u> : LES LIGNES DE CHAMPS SONT RADIALES ET DIRIGÉES VERS <u>L'INTÉRIEUR</u> (ATTRACTIF)

DIPÔLE ÉLECTRIQUE

Propriété du champ électrique :

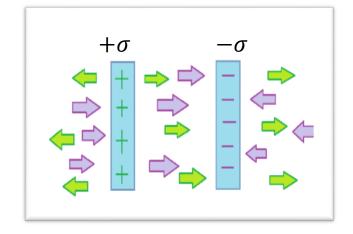

- DEUX CHARGES PONCTUELLES
 IDENTIQUES, DE SIGNES OPPOSÉS
- LE CHAMP VA DE LA CHARGE
 POSITIVE, À LA CHARGE NÉGATIVE

DISTRIBUTION PLANE DE CHARGES S'ÉTENDANT À L'INFINI

On définit σ la densité de charges du plan

Propriété du champ électrique :

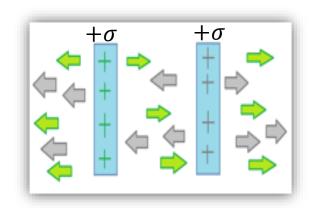
- PERPENDICULAIRE AU PLAN
- CONSTANT, PEU IMPORTE LA DISTANCE


$$E = \frac{\sigma}{2\varepsilon_0}$$

CHAMP ÉLECTRIQUE ENTRE DEUX PLANS

Pour deux plans chargés, de signes

opposés:


- CHAMP CONSTANT ENTRE LES PLAQUES
- S'ANNULE À L'EXTÉRIEUR DES PLAQUES
- VA DU PLAN POSITIF VERS LE PLAN NÉGATIF

Entre les plaques, le champ vaut : $E = \frac{\sigma}{\varepsilon_0}$

CHAMP ÉLECTRIQUE ENTRE DEUX PLANS

Pour deux plans chargés, de même signes :

- LE CHAMP S'ANNULE ENTRE LES PLAQUES
- CHAMP CONSTANT À L'EXTÉRIEUR DES PLAQUES

En dehors des plaques, le champ vaut : $E=rac{\sigma}{arepsilon_0}$

QCM 3 : A PROPOS DES CHARGES ÉLECTRIQUES

- A. La force de coulomb est additive
- B. Le champ électrique va de la charge positive à la charge négative
- C. Entre deux plans chargés négativement, le champ électrique s'annule
- D. Les lignes de champ d'une charge ponctuelle négative sont radiales et dirigées vers l'intérieur
- E. Les réponses A,B,C et D sont fausses

QCM 3 : A PROPOS DES CHARGES ÉLECTRIQUES

- A. La force de coulomb est additive
- B. Le champ électrique va de la charge positive à la charge négative
- C. Entre deux plans chargés négativement, le champ électrique s'annule
- D. Les lignes de champ d'une charge ponctuelle négative sont radiales et dirigées vers l'intérieur
- E. Les réponses A,B,C et D sont fausses

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

LE TRAVAIL D'UNE FORCE

Il s'agit de l'énergie fournie par la force lors du déplacement de son point d'application

$$W_{AB} = \overrightarrow{F}.\overrightarrow{AB}$$

$$W_{AB} = F.AB.cos(\alpha)$$

LE TRAVAIL D'UNE FORCE

Plusieurs types de travail:

- TRAVAIL MOTEUR, FORCE FAVORISE LE DÉPLACEMENT : VALEUR POSITIVE
- TRAVAIL N'INFLUX PAS SUR LE DÉPLACEMENT : VALEUR NULLE
- TRAVAIL RÉSISTANT, FORCE S'OPPOSE AU DÉPLACEMENT : VALEUR NÉGATIVE

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

FORCES CONSERVATRICES

Le travail pour aller de A vers B ne dépend pas du chemin suivi :

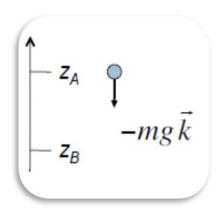
- FORCE DE PESANTEUR
- FORCE D'ÉLASTICITÉ
- FORCE DE COULOMB

Les forces de frottements ne sont pas conservatrices

L'ÉNERGIE POTENTIELLE NE S'APPLIQUE QU'AUX FORCES CONSERVATRICES

L'énergie potentielle correspond à :

- UNE ÉNERGIE LIÉE À UNE INTERACTION
- UNE ÉNERGIE CAPABLE DE SE TRANSFORMER EN ÉNERGIE CINÉTIQUE

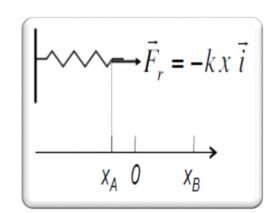

Variation d'énergie potentielle : $W_{AB} = U_f(A) - U_f(B)$

CAS 1 : LE FORCE DE PESANTEUR

Expression des énergies potentielles :

$$U_A = mgz_A$$

$$U_B = mgz_B$$


Travail de la force de pesanteur :

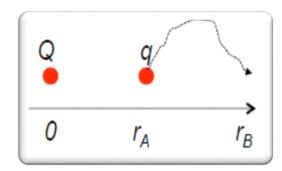
$$W_{AB} = mgz_A - mgz_B = mg.(z_A - z_B)$$

CAS 2 : LA FORCE D'ÉLASTICITÉ

Expression des énergies potentielles :

$$U_A = \frac{1}{2}kx_A^2 \qquad \qquad U_B = \frac{1}{2}kx_B^2$$

Travail de la force d'élasticité:


$$W_{AB} = \frac{1}{2}kx_A^2 - \frac{1}{2}kx_B^2 = \frac{1}{2}k.(x_A^2 - x_B^2)$$

CAS 3: LA FORCE DE COULOMB

Expression des énergies potentielles :

$$U_A = k. \frac{Q.q}{r_A}$$

$$U_B = k.\frac{Q.q}{r_B}$$

Travail de la force de coulomb :

$$W_{AB} = k \cdot \frac{Q \cdot q}{r_A} - k \cdot \frac{Q \cdot q}{r_B} = kQq \cdot (\frac{1}{r_A} - \frac{1}{r_B})$$

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

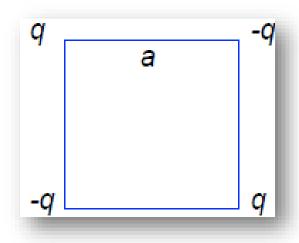
- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

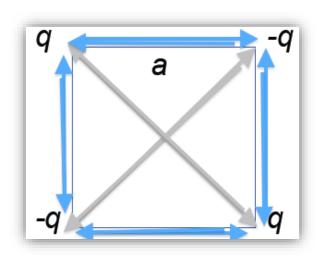

ÉNERGIE POTENTIELLE D'UNE DISTRIBUTION DE CHARGES

Energie nécessaire pour former la distribution, on en distingue deux types :

- SYSTÈME LIÉ: L'ÉNERGIE FINALE EST NÉGATIVE
- SYSTÈME NON LIÉ: L'ÉNERGIE FINALE EST POSITIVE, INSTABLE

<u>ATTENTION</u>: un système lié n'est pas forcément stable!

QUELLE EST L'ÉNERGIE DE CE SYSTÈME ?


On utilise la propriété additive de la loi de Coulomb

On cherche le nombre d'interactions

$$\frac{n(n-1)}{2}$$

Il y a 6 interactions

QUELLE EST L'ÉNERGIE DE CE SYSTÈME ?

En additionnant les énergies :

$$U = -4k\frac{q^2}{a} + 2k\frac{q^2}{a\sqrt{2}} = 2k\frac{q^2}{a}.(\frac{1-2\sqrt{2}}{\sqrt{2}})$$

On remarque un terme négatif : il s'agit d'un système lié

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

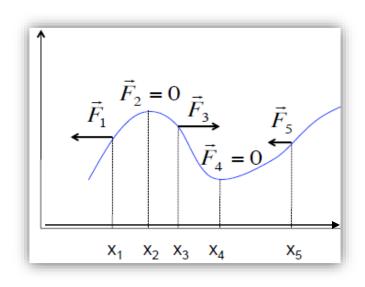
- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR


L'ÉNERGIE POTENTIELLE EST LA DÉRIVÉE DE LA FORCE

Définition utile lorsque :

- ON FAIT DE LA PHYSIQUE EXPÉRIMENTALE
- ON NE CONNAIT PAS LA FONCTION D'ÉNERGIE POTENTIELLE

$$F = -\frac{dU_F}{dx}$$

EXEMPLE :VARIATION D'ÉNERGIE EN FONCTION D'UNE DIRECTION DONNÉE

On remarque:

- POINT X₁ : ÉNERGIE POSITIVE
- POINT X₃ : ÉNERGIE NÉGATIVE
- DEUX POINTS D'ÉQUILIBRE

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

ÉNERGIE TOTALE ET ÉNERGIE CINÉTIQUE

Energie totale : somme énergies cinétique et potentielle :

$$E_t = E_c + U_r$$

L'énergie cinétique s'exprime :

$$E_c = \frac{1}{2}mv^2$$

THÉORÈME DE L'ÉNERGIE CINÉTIQUE

Expression du travail:

$$W_{AB} = E_c(B) - E_c(A)$$

$$W_{AB} = U_{ext}(A) - U_{ext}(B)$$

Loi de conservation de l'énergie :

$$E_c(B) + U_{ext}(B) = E_c(A) + U_{ext}(A)$$

ÉNERGIE TOTALE D'UNE MASSE SOUMISE À LA PESANTEUR ET LIÉE À UN RESSORT

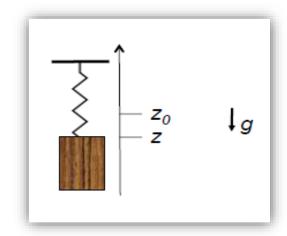
Quelles forces s'exercent?

- FORCE DE PESANTEUR
- FORCE D'ÉLASTICITÉ

Quelles sont les énergies potentielles ?

$$U_F = \frac{1}{2}k(z - z_0)^2$$

$$\begin{array}{c|c} & \downarrow g \\ \hline \end{array}$$


$$U_P = mgz$$

61

ÉNERGIE TOTALE D'UNE MASSE SOUMISE À LA PESANTEUR ET LIÉE À UN RESSORT

On en déduit l'expression de l'énergie totale :

$$E_t = \frac{1}{2}mv^2 + \frac{1}{2}k(z - z_0)^2 + mgz$$

QCM 4: LE FORMALISME DU POTENTIEL

- A. Le travail d'une force est une énergie
- B. L'énergie potentielle d'une charge ponctuelle décroit avec le carré de la distance
- C. Une énergie potentielle négative signifie que le système est stable
- D. L'énergie potentielle s'exprime en joule
- E. Les réponses A,B,C et D sont fausses

QCM 4: LE FORMALISME DU POTENTIEL

- A. Le travail d'une force est une énergie
- B. L'énergie potentielle d'une charge ponctuelle décroit avec le carré de la distance
- C. Une énergie potentielle négative signifie que le système est stable
- D. L'énergie potentielle s'exprime en joule
- E. Les réponses A,B,C et D sont fausses

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

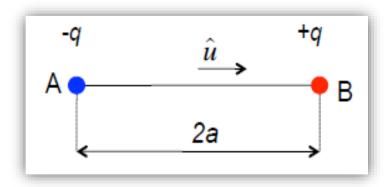
II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES


- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

DÉFINITION

Un dipôle correspond à deux

charges:

- DE MÊME VALEUR
- DE SIGNE OPPOSÉS
- SÉPARÉES D'UNE DISTANCE 2A

On y associe un moment dipolaire : $\overrightarrow{p} = 2a.q.\widehat{u}$

LE MOMENT DIPOLAIRE

Caractérisé par un vecteur:

- ALIGNÉ SUR LA DROITE JOIGNANT LES DEUX CHARGES
- VA DE LA CHARGE NÉGATIVE À LA POSITIVE
- LA NORME SE NOTE P

Unité: Coulomb.m

PROPRIÉTÉ DU DIPÔLE

Potentiel électrique décroit avec le carré de la distance :

$$V(M) = k. \frac{\overrightarrow{p.r}}{r^2}$$

Champ électrique créé par le dipôle décroit avec le cube de la distance

I) LA MÉCANIQUE CLASSIQUE

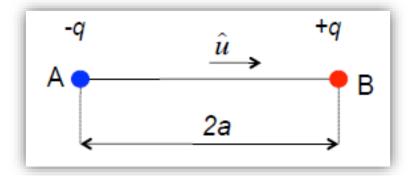
- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

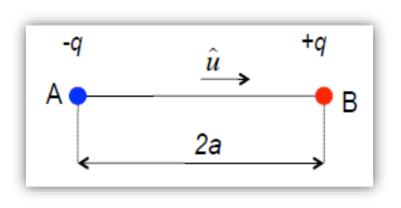
III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE


IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

DIPÔLE DANS UN CHAMP ÉLECTRIQUE


Le moment dipolaire cherche à se mettre dans le même sens que le champ :

- LA CHARGE POSITIVE TENDRA À SE METTRE DANS LE MÊME SENS QUE LE CHAMP
- LA CHARGE NÉGATIVE IRA DANS LE SENS OPPOSÉ

DIPÔLE DANS UN CHAMP ÉLECTRIQUE

Les forces s'appliquant:

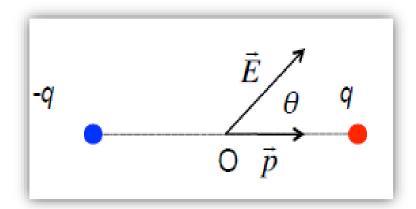
$$\overrightarrow{F}_A = -q \overrightarrow{E}$$

$$\overrightarrow{F}_B = q \overrightarrow{E}$$

$$\overrightarrow{F}_A + \overrightarrow{F}_B = 0$$

Moment des forces :

$$\overrightarrow{\Gamma} = \overrightarrow{OA} \wedge \overrightarrow{F_A} + \overrightarrow{OB} \wedge \overrightarrow{F_B} = \overrightarrow{p} \wedge \overrightarrow{E}$$


$$\Gamma = p.E.sin(\Theta)$$

ÉNERGIE POTENTIELLE DU DIPÔLE DANS UN CHAMP ÉLECTRIQUE

L'énergie potentielle prend

en compte:

- LE MOMENT DIPOLAIRE
- LE CHAMP ÉLECTRIQUE
- L'ANGLE ENTRE LES DEUX

$$U(\Theta) = -\overrightarrow{p}.\overrightarrow{E} = -p.E.cos(\Theta)$$

ÉNERGIE POTENTIELLE DU DIPÔLE DANS UN CHAMP ÉLECTRIQUE

Variation de l'énergie potentielle :

- ÉNERGIE MINIMUM : MOMENT DIPOLAIRE ET CHAMP ÉLECTRIQUE ALIGNÉS
- ÉNERGIE MAXIMUM : MOMENT DIPOLAIRE ET CHAMP ÉLECTRIQUE EN SENS OPPOSÉ

I) LA MÉCANIQUE CLASSIQUE

- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE

IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- 3. DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

DIPÔLE DANS LA MATIÈRE

Il existe deux types moments dipolaires:

• MOMENT DIPOLAIRE INDUIT : MOLÉCULES NON POLAIRE, CARACTÉRISÉ PAR LE COEFFICIENT DE POLARISABILITÉ

$$\overrightarrow{p} = \alpha \overrightarrow{E}$$

• MOMENT DIPOLAIRE PERMANENT : MOLÉCULES POLAIRES

<u>ATTENTION</u>: les molécules polaires ont aussi un moment dipolaire induit!

I) LA MÉCANIQUE CLASSIQUE

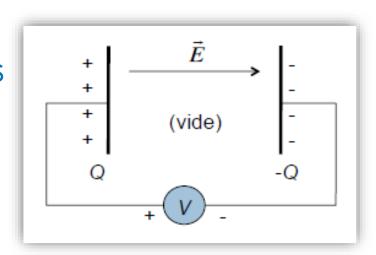
- GÉNÉRALITÉ
- 2. CINÉMATIQUE
- DYNAMIQUE
- 4. CONDITIONS D'ÉQUILIBRE D'UN SOLIDE

II) L'ÉLECTROSTATIQUE

- FORCE ÉLECTROSTATIQUE
- 2. NOTION DE CHAMP ÉLECTRIQUE
- 3. EXEMPLES ÉLÉMENTAIRES

III) LE FORMALISME DU POTENTIEL

- 1. TRAVAIL D'UNE FORCE
- 2. NOTION D'ÉNERGIE POTENTIELLE
- 3. ENERGIE POTENTIELLE ASSOCIÉE À UNE DISTRIBUTION DE CHARGES
- 4. RELATION FORCE-ÉNERGIE PONCTUELLE
- 5. ENERGIE CINÉTIQUE ET ÉNERGIE TOTALE


IV) LES DIPÔLES ÉLECTRIQUES

- 1. DÉFINITION
- 2. DIPÔLE ÉLECTRIQUE ET CHAMP ÉLECTRIQUE
- DIPÔLE ÉLECTRIQUE DANS LA MATIÈRE
- 4. CONDENSATEUR

LE CONDENSATEUR

Il s'agit d'un dipôle:

- CONSTITUÉ DE DEUX PLAQUES CHARGÉES
- DE SIGNES OPPOSÉS
- SÉPARÉES D'UNE DISTANCE D

On peut évaluer la densité de charge : $\sigma = \frac{Q}{S}$

CAPACITÉ DU CONDENSATEUR

La charge des plaques est directement proportionnelle à la capacité du condensateur :

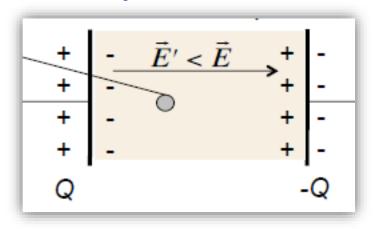
$$Q = C.V$$

On en déduit l'expression de la capacité d'un condensateur : $C = S \frac{\varepsilon_0}{d}$

ÉNERGIE D'UN CONDENSATEUR

L'énergie emmagasinée d'un condensateur s'exprime :

$$W = \frac{1}{2}C.V^2$$


Unités:

- CAPACITÉ DU CONDENSATEUR : FARAD
- ÉNERGIE EMMAGASINÉE : JOULES
- DIFFÉRENCE DE POTENTIEL : VOLT

MATÉRIAU DIÉLECTRIQUE

Permet de moduler le champ électrique

Les conséquences de l'utilisation d'un diélectrique sont :

- DIMINUTION DU CHAMP ÉLECTRIQUE
- DIMINUTION DE LA DIFFÉRENCE DE POTENTIEL
- AUGMENTATION DE LA CAPACITÉ DU CONDENSATEUR