
BIOPHYSIQUE DE LA CIRCULATION 1

FEAT DYDOU ET OSKOUR

INTRODUCTION

• Système cardio vasculaire = cœur + vaisseaux

- Favorise les échanges
- Grande surface d'échange + vitesse circulatoire lente

I) BASES PHYSIQUES

• Fluide = Milieu matériel déformable, sans forme propre, s'écoule ++

- 2 types de fluides :
 - Milieu Liquide : Ecinétique ≈ Eliaison
 - Molécules à distance restreintes -> supposé incompressible
 - Milieu gazeux : Ecinétique >> Eliaison,
 - Molécule à distance variable -> COMPRESSIBLE

2 TYPES DE FLUIDES

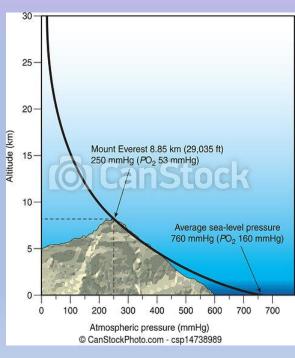
PARFAITS/IDEAUX = Pas de frottements (on ne prend pas compte de la viscosité)

REELS = **Frottements** (on tient compte de la viscosité)

2 TYPES DE SITUATIONS:

MECANIQUE STATIQUE	MECANIQUE DYNAMIQUE
Fluide immobile	Fluide en mouvement
Caractérisé par une PRESSION	Caractérisé par un débit
Même comportement IDÉAL / RÉEL	Différents comportements IDÉAL / RÉEL

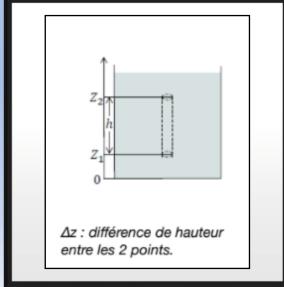
STATIQUE D'UN FLUIDE

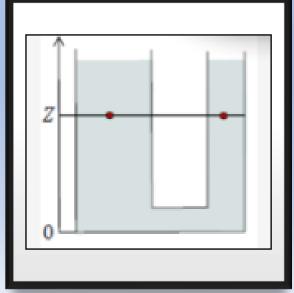

- Pression statique P = Poids de la colonne de liquide
- Pression relative : effet de la colonne de liquide uniquement $\Delta P = \rho gh$
- **Pression absolue** : Effet de la colonne de liquide + la colonne atmosphérique
 - $\underline{P}_{absolue} = \underline{P}_{relative} + \underline{P}_{atmosph\acute{e}rique}$
- Unité de la pression : Pascal (Pa) ou bar (1 bar = 10⁵ Pa)

PRESSION ATMOSPHÉRIQUE

- Patm = Poids de la colonne d'air atmosphérique
 - Patm = $\rho gh = 1013 hPa$

• Plus l'altitude augmente et plus la pression atm diminue




LA PHARMACO SE FAISANT APPELER "MEILLEURE MATIÈRE"

LOIS DE PASCAL

Quack quack your opinion is wack

1ÈRE LOI

LA PRESSION EST LA MÊME DANS
TOUTES LES DIRECTIONS →
INDÉPENDANTE DE L'ORIENTATION DU
CAPTEUR.

2E LOI

La pression est la même en tout point de même profondeur.

La différence de Pression dP entre 2 points est proportionnelle à la différence de hauteur entre ces 2 points

3E LOI

 $\Delta P = Pz1 - Pz2 = \rho gh = -\rho g\Delta z$

CONCLUSION STATIQUE DES FLUIDES

• Paramètre essentiel = <u>Pression</u>

• Pression liée au poids de la colonne de liquide

• Indépendante de l'orientation du capteur

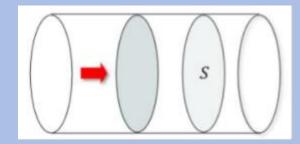
QCM TIME (prof)

QCM 1: Quel(s) est (sont) le (les) facteur(s) qui influence(nt) la mesure de la pression dans un liquide immobile incompressible ?

- A) La pression atmosphérique
- B) L'orientation du capteur
- C) La hauteur de liquide au-dessus du point de mesure
- D) La masse volumique du liquide
- E) Les propositions A, B, C et D sont fausses

REPONSES

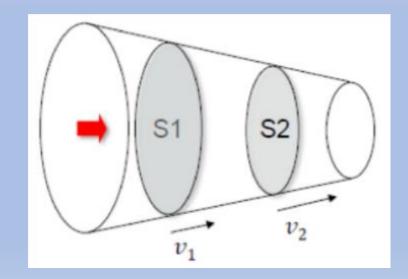
QCM 1: ACD


- A) Vrai
- B) Faux
- C) Vrai
- D) Vrai
- E) Faux

NOTION DE DÉBIT

DÉBIT = Volume de fluide traversant une section S par unité de temps

$$Q = \frac{V}{dt}$$


Il y a une relation entre débit et vitesse d'écoulement :

Q= S.v = Section x vitesse ++

PRINCIPE DE CONTINUITÉ DU DÉBIT

• 3 Hypothèses:

- Fluide incompressible -> ρ est constante
- Régime stationnaire -> vitesse en un point constante
- Section variable

• **Débit constant** en tout point : ++

$$Q_1 = Q_2 = Q$$

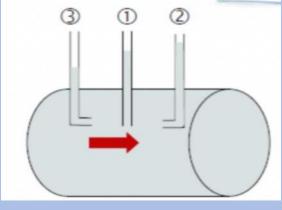
$$S_1v_1 = S_2v_2 = constant = Q$$

EQUATION DE BERNOULLI

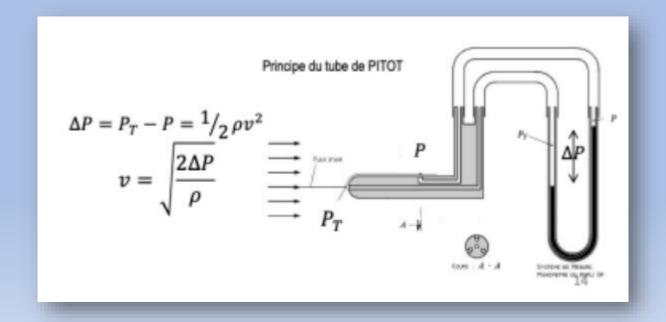
- S'applique à un fluide incompressible et idéal
- 3 types d'énergies :
 - E1 de pesanteur (liée à la hauteur)
 - E2 cinétique (liée à la vitesse)
 - E3 pression statique (Pression = Energie / Volume donc E3 = Pression x Volume)
 - Equation de Bernoulli: ++

Et =
$$E_1 + E_2 + E_3 = mgh + \frac{1}{2}mv^2 + PV = constante$$

$$Pt = \frac{Et}{V} = \frac{mgh}{V} + \frac{1/2 mv^2}{V} + P = constante$$


$$Pt = \rho gh + 1/2 \rho v^2 + P = constante$$

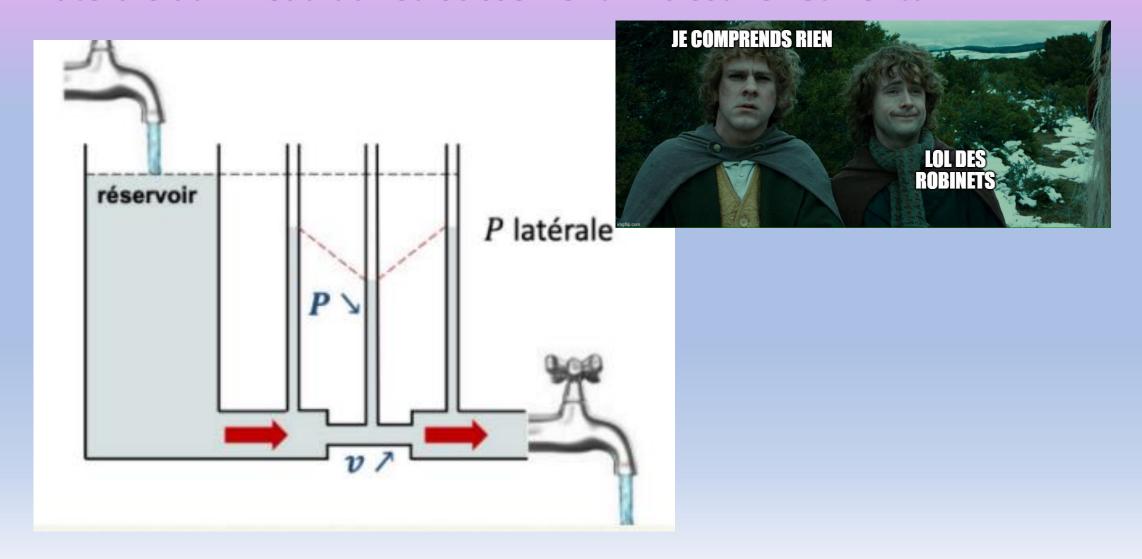
 ρgh = pression de pesanteur 1/2 ρv^2 = pression cinétique P = pression statique


MESURE DES PRESSIONS

• ≠ des fluides statiques : valeurs mesurées dépendent de l'orientation du capteur ++

- Il existe 3 types de <u>mesures</u> (≠ des 3 types de pressions) : ++++
- (1) Capteur parallèle au courant -> Pression latérale ou statique P
- (2) Capteur face au courant -> Pression « terminale » : PT = P + 1/2ρν²
- (3) Capteur dos au courant -> Pression « d'aval » : PA = P $1/2\rho v^2$

TUBE DE PITOT


ECOULEMENT HORIZONTAL D'UN FLUIDE IDÉAL

• Pt se répartit en la pression latérale et la pression cinétique car la pression de pesanteur est constante (conduit horizontal)

Pt =
$$\rho gh + 1/2\rho v^2 + P = Constante$$

 $1/2\rho v^2 + P = Constante$
D'où P = constante - $1/2\rho v^2$

• Continuité du débit (Q=Sv) -> si la section diminue, la vitesse augmente -> pression cinétique **↗** et pression latérale **↘**

Une diminution de la section entraîne une baisse locale de la pression latérale au niveau du rétrécissement -> C'est l'effet Venturi +++

CONCLUSION DYNAMIQUE D'UN FLUIDE IDÉAL

- Deux règles pour l'écoulement d'un fluide idéal dans un conduit :
 - La constance du Débit
 - La constance de la somme des pressions

Le tutorat est gratuit. Toute vente ou repro

QCM TIME

QCM 2: On considère une sténose localisée au niveau d'une artère. La vitesse du sang avant la sténose est v1= 1 m.s-1. Après la sténose, on un diamètre d2 = 4 mm et une vitesse v2 = 4 m.s-1. Quel est le diamètre avant la sténose :

- A) 4 mm
- B) 8 mm
- C) 0,8 cm
- D) 16 mm
- E) 1,6 cm

RESOLUTION

Principe de continuité du débit :

$$S_1 v_1 = S_2 v_2 \rightarrow \pi r_1^2 v_1 = \pi r_2^2 v_2 \rightarrow \frac{\pi d_1^2}{4} v_1 = \frac{\pi d_2^2}{4} v_2$$

On simplifie:
$$d_1^2 v_1 = d_2^2 v_2$$

$$d_1^2 = \frac{d_2^2 v_2}{v_1} \rightarrow d_1 = d_2 \sqrt{\frac{v_2}{v_1}}$$

Application Numérique:
$$d_1 = 4 \times \sqrt{\frac{4}{1}} = 4 \times 2 = 8 \text{ mm}$$

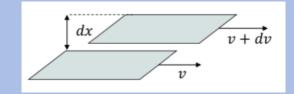
REPONSES

QCM 2 : BC

- A) Faux
- B) Vrai
- C) Vrai
- D) Faux
- E) Faux

LA PERTE DE CHARGE

• VISCOSITÉ = frottements consommant de l'énergie libérée sous forme de chaleur


• <u>L'équation de Bernoulli n'est plus vérifée</u> :

$$PT = PGH + 1/2PV^2 + P + CHALEUR = CONSTANTE$$

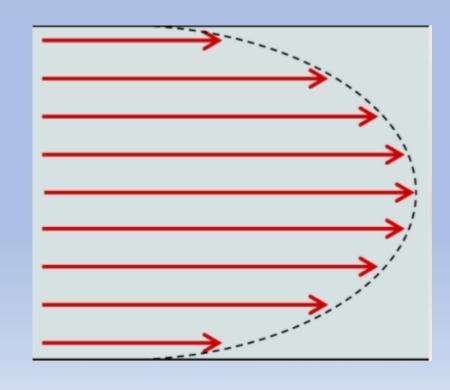
LA VISCOSITÉ

Deux lames de fluides circulent parallèlement à des vitesses différentes. La force de frottement est exprimée par :

$$F = \eta S \frac{dv}{dx}$$

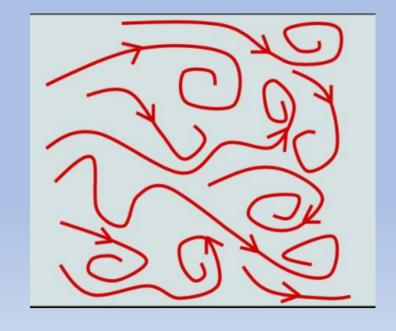
S = surface commune aux 2 lames dv/dx = gradient de vitesse (« taux de cisaillement ») η = viscosité (constante caractéristique du liquide)

CATÉGORIES DE FLUIDES


* NEWTONIENS : η est une constante caractéristique du liquide qui varie seulement avec la température (T°C $\nearrow \eta \searrow$)

* NON NEWTONIENS : η varie avec la température mais aussi avec le taux de cisaillement ($\frac{dv}{dx}\nearrow \to \eta \searrow$)

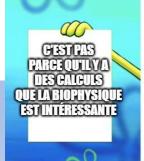
RÉGIME D'ÉCOULEMENT DES FLUIDES RÉELS


• RÉGIME LAMINAIRE

- Vitesse d'écoulement faible
- Viscosité = facteur de cohérence
- Les lignes de courant ne se croisent pas
- Vitesse max au centre
- Profil parabolique

• <u>RÉGIME TURBULENT</u>

- Vitesse d'écoulement moyenne ou élevée
- Viscosité n'est plus un facteur de cohérence
- Trajectoires désordonnées
- Pas de distribution systématisée des vitesses


FRONTIÈRE ENTRE LES DEUX RÉGIMES

Dépend de 4 paramètres simultanément :

- ✓ La vitesse moyenne d'écoulement v ¬
- ✓ Le diamètre du conduit d
- ✓ La masse volumique du liquide p
- ✓ La viscosité η

si ↗ = risque de turbulence ↗

si ↗ = risque de turbulence ↘

NOMBRE DE REYNOLDS

$$Re = \frac{\rho dv}{\eta}$$

Nombre empirique sans unités, sert à définir le seuil entre laminaire et turbulent

- ❖ Si Re ≤ 2000 : Le régime d'écoulement est laminaire
- Si Re > 10 000 : Le régime d'écoulement est turbulent
- Entre les 2 : le régime d'écoulement est instable on ne peut rien conclure

• Vitesse critique

$$\mathbf{V} = \frac{2000\eta}{\rho d}$$

Vitesse au delà de laquelle le régime laminaire n'est plus garanti

LOI DE POISEUILLE ++++

- Dans un conduit horizontal en écoulement laminaire
- Pression de pesanteur constante, section constante, vitesse constante

$$\Delta P = Q \times R \text{ avec } R = \frac{8\eta L}{\pi r^4} \text{ donc } \Delta P = Q \frac{8\eta L}{\pi r^4}$$

RECAP RÉGIMES D'ÉCOULEMENT

LAMINAIRE:

Toute l'énergie consommée est utilisée pour **vaincre la viscosité**, **Relation linéaire** entre ΔP et le débit, Loi de Poiseuille

TURBULENT:

Peu efficace, Pas de proportionnalité entre ΔP et le débit, Vibrations + chaleur

QCM TIME (prof)

QCM 3: Quelle(s) est (sont la (les) proposition(s) vraie(s) concernant les règles de circulation des différents types de fluide ?

- A) L'équation de Bernoulli s'applique à un fluide idéal
- B) La loi de Poiseuille s'applique à un fluide réel newtonien à condition que sont écoulement soit laminaire
- C) Un écoulement non-newtonien s'écoule toujours selon un régime d'écoulement turbulent
- D) La loi de Poiseuille s'applique à un fluide réel non-newtonien en régime d'écoulement turbulent si on considère sa viscosité apparente
- E) Les propositions A, B, C et D sont fausses

REPONSES

QCM 3: AB

- A) Vrai
- B) Vrai
- C) Faux
- D) Faux

