Lire une table

I. LA TABLE DE LA LOI NORMALE CENTREE REDUITE

A. A partir d'une loi normale

<u>Passage de la loi Normale à la loi Normale centré réduite</u> : changement de variable

On peut donc ramener tous les problèmes suivant une loi Normale à une distribution Normale centrée réduite ! (*Pourquoi faire ça ? Tout simplement parce qu'on connait les valeurs des probabilités pour la loi normale centrée réduite grâce à sa table mais pas celle des lois normales autres*).

On a la variable aléatoire X qui suit une loi Normale N (μ ; σ). Soit Z une variable aléatoire qui suit une loi Normale centrée réduite N (0; 1).

Ainsi
$$Z = \frac{X - \mu}{\sigma}$$

Exemples:

1/ On a N(4; 2) et on cherche P(X<5):

Avec la loi centrée réduite on a z=(5-4)/2=0.5

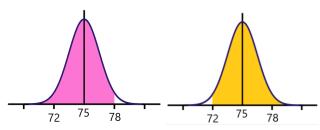
On regarde donc dans la table P(X<0.5):

•	•			. , ,			
		0,01	0,02	0,03	0,04	0,05	0,06
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772
9,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123

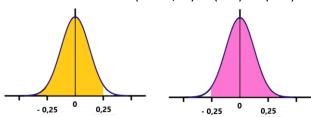
 $P(X<0,5) \approx 0.7$

2/ On a N(75; 12) et on cherche P(X>72):

Avec la loi centrée réduite on a z=(72-75)/12=-0.25 la table ne couvre pas les nombre négatifs! On a donc deux options :


a. Trouver une équivalence : P(X>72)=P(X<78). La loi Normale étant symétrique autour de la moyenne 75 et 72 étant **inférieur de 3** à 75 on peut regarder aussi par rapport à la proba du nombre qui lui est **supérieur de 3** : 78.

Ce qui donne : z=(78-75)/12=3/12=1/4=+0,25On regarde donc dans la table P(X<0,25) :


	0	0,01	0,02	0,03	0,04	0 05
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596
0,2	0,579 3	0,5032	0,5874	0,5910	0,594	0,5987
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368

 $P(X<0,25) \approx 0.6$

→ Donc P(X<78)=0,6=P(X>72)

b. On a z= -0.25 pour P(X>72), on regarde dans la table pour z=0.25 : P(X<0.25) \approx 0.6. Or comme la courbe est symétrique autour de la moyenne calculer l'aire de P(X<0.25) revient à calculer l'aire de P(X> - 0.25) = P(X>z) = P(X>z) = P(X>72) \approx 0.6.

B. Lecture de la table de loi Normale Centrée Réduite

Explications de la table de la loi normale centrée réduite 0,5000 0,5040 0,5080 0,5120 0,5517 0,5557 0,5398 0,5438 0,5478 0,2 0.5793 0,5832 0,5871 0,5910 0,5948 0,6331 0,3 0,6179 0,6217 0,6255 0,6293 0.6554 0,6591 0,6628 0,6664 0,4 0,5 0,6915 0,6950 0,6985 0,7019 0,7291 0,7324 0,7357 0,6 0,7257 0,7 0,7580 0,7611 0,7642 0,7673 Sur la première 0,8 0,7881 0,7910 0,7939 0,7967 0,8159 0,8186 0,8212 0,8238 0,8254 0,9 0,8438 ligne on lit la 1,0 0,8413 0,8461 0,8485 0,8643 0,8665 0,8686 0,8708 1,2 0.8840 0,8269 0,0088 997 0,8925 seconde 0,9049 0,9032 0,9066 0,9082 1,3 0,9099 0.9192 0,9207 0.9251 décimale 1,4 0.9222 0,9236 On lit le chiffre des unités et la première décimale dans la colonne de gauche Pour P(Z<1,24) on lit 1,2 dans la première colonne puis 0,04 sur la première ligne. On cherche l'intersection de la ligne et de la colonne. On trouve 0,8925. \rightarrow On a P(Z<1,24)= 0,8925.

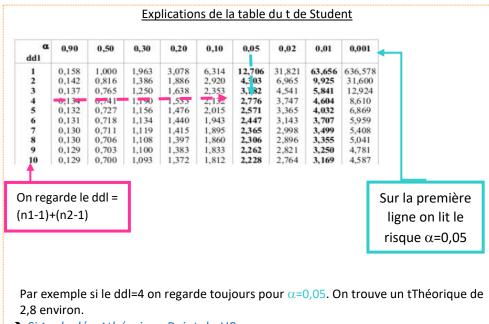
II. LA TABLE DE L'ECART REDUIT

alpha	0	0.01	0.02	0.03	0.04	0 5	0.06	0.07	0.08	0.09
- 0	infini	-2. 576 	2.2 26	2.47	2,054	1.96	1.881	1.812	1.751	1.695
0.1	1.645	1.598	1.555	1.514	1.476	1.44	1.405	1.372	1.341	1.311
0.2	1.282	1.254	1.227	1.2	1.175	1.15	1.126	1.103	1.08	1.058
0.3	1.036	1.015	0.994	0.974	0.954	0.935	0.915	0.896	0.878	0.86
0.4	0.842	0.824	0.806	0.789	0.772	0.755	0.739	0.722	0.706	0.69
0.5	0.674	0.659	0.643	0.628	0.613	0.598	0.583	0.568	0.553	0.539
0.6	0.524	0.51	0.496	0.482	0.468	0.454	0.44	0.426	0.412	0.399
0.7	0.385	0.372	0.358	0.345	0.332	0.319	0.305	0.292	0.279	0.266
8.0	0.253	0.24	0.228	0.215	0.202	0.189	0.176	0.164	0.151	0.138
0.9	0.126	0.113	0.1	0.088	0.075	0.063	0.05	0.038	0.025	0.013
								_		

On regarde au <u>risque de 5%</u> donc avec α =0,05 et si notre **Z** calculé > 1,96 on regarde à α =0,04 si le Z est encore inférieur on regarde jusqu'à ce que le Z soit supérieur. On peut même chercher dans la table des toutes petites valeurs :

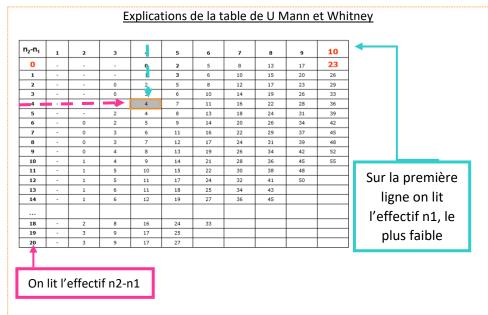
0,001	0,000 1	0,000 01	0,000 001	0,000 000 1	0,000 000 01	0,000 000 001
3,2905	3,89059	4,41717	4,89164	5,32672	5,73073	6,10941

On est toujours au niveau de 0


Sur cette ligne on remonte jusqu'à voir le α correspondant à notre Z.

risque α =0,05

Par exemple si Zcalculé=4,5 on regarde dans la première table à α =0,05, cependant Z=4,5>1,96 donc on continue de regarder vers des α plus faibles. On redescend jusqu'à la seconde table jusqu'à α =0,000.001 car le Z théorique correspondant est de 4,41 et le suivant trop élevé est de 4,89 : on pourra donc conclure au <u>risque de 0,0001%</u>.


→ Si ɛcalculé > ɛthéorique Rejet de H0

III. LA TABLE t DE STUDENT

→ Si tcalculé > tthéorique Rejet de H0

IV. LA TABLE DE U MANN ET WHITNEY

Pour n1=4 et n2=8 on regarde donc sur la ligne du n2-n1=4 et sur la colonne du 4. On lit donc un Uthéorique=4 dans la table et on le comparera au Ucalculé le plus petit (choisissez le plus petit entre UAB et UBA).

→ Si **U**calculé < **U**théorique Rejet de H0

V. LA TABLE DU χ^2

Comment trouver X²t sur la table du X²?

On cherche X^2_t en fonction du risque α et du nb de ddl.

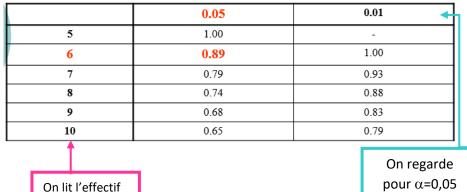
Sur les <u>lignes</u> on trouve le <u>nombre de ddl</u> et sur la <u>colonne</u> le <u>risque</u> α . X_t^2 (on prend généralement 5%) se trouve à l'intersection des deux.

Ici par exemple, on cherche X_t^2 pour α =5% et ddl=1

١.	α							
ddl	0,9	0,5	0,3	0,2	0,1	0,05	0,02	0,01
1	0,016	0,455	1,074	1,642	2,706	3,841	5,412	6,635
2	0,211	1,386	2,408	3,219	4,605	5,991	7,824	9,21
3	0,584	2,366	3,665	4,642	6,251	7,815	9,837	11,345
4	1,064	3,357	4,878	5,989	7,779	9,488	11,668	13,277
5	1,61	4,351	6,064	7,289	9,236	11,07	13,388	15,086
6	2,204	5,348	7,231	8,558	10,645	12,592	15,033	16,812
7	2,833	6,346	8,383	9,803	12,017	14,067	16,622	18,475
8	3,49	7,344	9,524	11,03	13,362	15,507	18,168	20,09
9	4,168	8,343	10,656	12,242	14,684	16,919	19,679	21,666
10	4,865	9,342	11,781	13,442	15,987	18,307	21,161	23,209
11	5,578	10,341	12,899	14,631	17,275	19,675	22,618	24,725
12	6,304	11,34	14,011	15,812	18,549	21,026	24,054	26,217
13	7,042	12,34	15,119	16,985	19,812	22,362	25,472	27,688
14	7,79	13,339	16,222	18,151	21,064	23,685	26,873	29,141
15	8,547	14,339	17,322	19,311	22,307	24,996	28,259	30,578
16	9,312	15,338	18,418	20,465	23,542	26,296	29,633	32
17	10,085	16,338	19,511	21,615	24,769	27,587	30,995	33,409

On lit le degré de liberté

= (nb lignes - 1) (nb colonnes - 1)


On regarde pour α =0,05

Ensuite on compare le Zthéorique de la table au Z que l'on a calculé!

→ Si **Z**calculé > **Z**théorique Rejet de H0

VI. LA TABLE DU r' DE SPEARMAN

Explication de la table

On regarde à α =0,05 et dans la ligne correspondant à l'effectif n=7. Ensuite on compare le r' théorique de la table au r' que l'on a calculé !

→ Si rcalculé = rthéorique Rejet de H0

VII. LA TABLE DU COEFFICIENT DE CORRELATION

Explication de la table


ntipolis		α		
ddl	0,1	0,05	0,02	0,01
1	0,9877	0,9969	0,9995	0,9999
2	0,9	0,95	0,98	0,99
3	0,8054	0,8783	0,9343	0,9587
4	0,7293	0,8114	0,8822	0,9172
5	0,6694	0,7545	0,8329	0,8745
6	0,6215	0,7067	0,7887	0,8343
7	0,5822	0,6664	0,7498	0,7977
8	0,5494	0,6319	0,7155	0,7646
9	0,5214	0,6021	0,6851	0,7348
10	0,4973	0,576	0,6581	0,7079
11	0,4762	0,5529	0,6339	0,6835
12	0,4575	0,5324	0,612	0,6614
13	0,4409	0,5139	0,5923	0,6411
14	0,4259	0,4973	0,5742	0,6226
15	0,4124	0,4821	0,5577	0,6055
16	0,4	0,4683	0,5425	0,5897
17	0,3887	0,4555	0,5285	0,5751
18	0,3783	0,4438	0,5155	0,5614
100	0,1638	0,1946	0,2301	0,254

On lit le **ddl= n-2**

On regarde pour α =0,05

On prend une série à n=6. On regarde à α =0,05 et dans la ligne correspondant à l'effectif n-2=6-2=4. Ensuite on compare le r théorique de la table au r que l'on a calculé !

- \rightarrow Si r > 0 : liaison positive donc x et y varient dans le même sens.
- → Si r < 0 : liaison négative donc x et y varient en sens inverse.
- → Si **Z**calculé > **Z**théorique : Rejet de H0

